This article proposes a silicon-based electrostatic kinetic energy harvester with an ultra-wide operating frequency bandwidth from 1 Hz to 160 Hz. This large bandwidth is obtained, thanks to a miniature tungsten ball impacting with a movable proof mass of silicon. The motion of the silicon proof mass is confined by nonlinear elastic stoppers on the fixed part standing against two protrusions of the proof mass. The electrostatic transducer is made of interdigited-combs with a gap-closing variable capacitance that includes vertical electrets obtained by corona discharge. Below 10 Hz, the e-KEH offers 30.6 nJ per mechanical oscillation at 2 grms, which makes it suitable for powering biomedical devices from human motion. Above 10 Hz and up to 162 Hz, the harvested power is more than 0.5 μW with a maximum of 4.5 μW at 160 Hz. The highest power of 6.6 μW is obtained without the ball at 432 Hz, in accordance with a power density of 142 μW/cm3. We also demonstrate the charging of a 47-μF capacitor to 3.5 V used to power a battery-less wireless temperature sensor node.

1.
P. D.
Mitcheson
,
T. C.
Green
,
E. M.
Yeatman
, and
A. S.
Holmes
,
J. Microelectromech. Syst.
13
,
429
(
2004
).
2.
Y.
Minakawa
,
R.
Chen
, and
Y.
Suzuki
, “
X-shaped-spring Enhanced MEMS Electret Generator for Energy Harvesting
,” in
Proc. 17th Int. Conf. Solid-state Sensors, Actuators, and Microsystems (Transducers '13), Barcelona
(
IEEE
,
2013
), pp.
2241
2244
.
3.
D.
Miki
,
M.
Honzumi
,
Y.
Suzuki
, and
N.
Kasagi
, “
Large-Amplitude MEMS Electret Generator with Nonlinear Spring
,”
Proc. 23rd IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS2010), Hong Kong, China
(
IEEE
,
2010
), pp.
176
179
.
4.
C. P.
Le
and
E.
Halvorsen
, “
Wide tuning-range resonant-frequency control by combining electromechanical softening and hardening springs
,”
Proc. 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII)
(
IEEE
,
2013
), pp.
1352
1355
.
5.
P.
Basset
,
D.
Galayko
,
F.
Cottone
,
R.
Guillemet
,
E.
Blokhina
,
F.
Marty
, and
T.
Bourouina
,
J. Micromech. Microeng.
24
,
035001
(
2014
).
6.
Y.
Naruse
,
N.
Matsubara
,
K.
Mabuchi
,
M.
Izumi
, and
S.
Suzuki
,
J. Micromech. Microeng.
19
,
094002
(
2009
).
7.
H.
Liu
,
C. J.
Tay
,
C.
Quan
,
T.
Kobayashi
, and
C.
Lee
,
J. Microelectromech. Syst.
20
,
1131
(
2011
).
8.
Y.
Lu
,
X.
Wang
,
X.
Wu
,
J.
Qin
, and
R.
Lu
,
J. Micromech. Microeng.
24
,
065010
(
2014
).
9.
T.
Galchev
,
E. E.
Aktakka
, and
K.
Najafi
,
J. Microelectromech. Syst.
21
,
1311
(
2012
).
10.
T.
Takahashi
,
M.
Suzuki
,
T.
Nishida
,
Y.
Yoshikawa
, and
S.
Aoyagi
, “
Vertical capacitive energy harvester positively using contact between proof mass and electret plate – Stiffness matching by spring support of plate and stiction prevention by stopper mechanism
,”
Proc. 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
(
IEEE
,
2015
), pp.
1145
1148
.
11.
L.
Gu
and
C.
Livermore
,
Smart Mater. Struct.
20
,
045004
(
2011
).
12.
Y.
Lu
,
F.
Cottone
,
S.
Boisseau
,
D.
Galayko
,
F.
Marty
, and
P.
Basset
,
J. Phys. Conf. Ser.
660
,
012003
(
2015
).
13.
P. D.
Mitcheson
,
E. M.
Yeatman
,
G. K.
Rao
,
A. S.
Holmes
, and
T. C.
Green
,
Proc. IEEE
96
,
1457
(
2008
).
You do not currently have access to this content.