This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic “plucking” of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.

1.
J. W.
Matiko
,
N. J.
Grabham
,
S. P.
Beeby
, and
M. J.
Tudor
,
Meas. Sci. Technol.
25
,
012002
(
2014
).
2.
P. H.
Mellor
,
S. G.
Burrow
,
T.
Sawata
, and
M.
Holme
,
IEEE Trans. Ind. Appl.
41
,
551
(
2005
).
3.
P. D.
Mitcheson
,
E. M.
Yeatman
,
G. K.
Rao
,
A. S.
Holmes
, and
T. C.
Green
,
Proc. IEEE
96
,
1457
(
2008
).
4.
A. S.
Holmes
, “
Energy harvesting from fluid flows
,” in
Micro Energy Harvesting
(
Wiley
,
2015
), pp.
297
319
.
5.
R.
Myers
,
M.
Vickers
,
H.
Kim
, and
S.
Priya
,
Appl. Phys. Lett.
90
,
054106
(
2007
).
6.
A.
Holmes
,
G.
Hong
, and
K.
Pullen
,
J. Microelectromech. Syst.
14
,
54
(
2005
).
7.
S.
Priya
,
C.-T.
Chen
,
D.
Fye
, and
J.
Zahnd
,
Jpn. J. Appl. Phys., Part 2
44
,
L104
(
2005
).
8.
H.
Fu
and
E. M.
Yeatman
, “
A miniature radial-flow wind turbine using piezoelectric transducers and magnetic excitation
,”
J. Phys.: Conf. Ser.
(to be published).
9.
D. A.
Howey
,
A.
Bansal
, and
A. S.
Holmes
,
Smart Mater. Struct.
20
(
8
),
085021
(
2011
).
10.
R. A.
Kishore
,
D.
Vukovi
, and
S.
Priya
,
Ferroelectrics
460
,
98
(
2014
).
11.
M.
Lallart
,
S. R.
Anton
, and
D. J.
Inman
,
J. Intell. Mater. Syst. Struct.
21
,
897
(
2010
).
12.
S.
Roundy
and
Y.
Zhang
,
Proc. SPIE
5649
,
373
(
2005
).
13.
L. M.
Miller
,
P.
Pillatsch
,
E.
Halvorsen
,
P. K.
Wright
,
E. M.
Yeatman
, and
A. S.
Holmes
,
J. Sound Vib.
332
,
7142
(
2013
).
14.
V. R.
Challa
,
M. G.
Prasad
, and
F. T.
Fisher
,
Smart Mater. Struct.
20
,
025004
(
2011
).
15.
L.
Gu
and
C.
Livermore
,
Appl. Phys. Lett.
97
,
081904
(
2010
).
16.
G.
Akoun
and
J.-P.
Yonnet
,
IEEE Trans. Magn.
20
,
1962
(
1984
).
17.
A.
Erturk
and
D. J.
Inman
,
Smart Mater. Struct.
18
,
025009
(
2009
).
18.
P.
Pillatsch
,
E. M.
Yeatman
, and
A. S.
Holmes
,
Sens. Actuators A: Phys.
206
,
178
(
2014
).
19.
M. A.
Karami
,
J. R.
Farmer
, and
D. J.
Inman
,
Renewable Energy
50
,
977
(
2013
).
20.
S.-D.
Kwon
,
Appl. Phys. Lett.
97
,
164102
(
2010
).
21.
D.
Zhu
,
S.
Beeby
,
M.
Tudor
,
N.
White
, and
N.
Harris
,
IEEE Sens. J.
13
,
691
(
2013
).
You do not currently have access to this content.