The microscopic contributions to the electric-field-induced macroscopic strain in a morphotropic 0.93(Bi1/2Na1/2TiO3)−0.07(BaTiO3) with a mixed rhombohedral and tetragonal structure have been quantified using full pattern Rietveld refinement of in situ high-energy x-ray diffraction data. The analysis methodology allows a quantification of all strain mechanisms for each phase in a morphotropic composition and is applicable to use in a wide variety of piezoelectric compositions. It is shown that during the poling of this material 24%, 44%, and 32% of the total macroscopic strain is generated from lattice strain, domain switching, and phase transformation strains, respectively. The results also suggest that the tetragonal phase contributes the most to extrinsic domain switching strain, whereas the lattice strain primarily stems from the rhombohedral phase. The analysis also suggests that almost 32% of the total strain is lost or is a one-time effect due to the irreversible nature of the electric-field-induced phase transformation in the current composition. This information is relevant to on-going compositional development strategies to harness the electric-field-induced phase transformation strain of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric materials for actuator applications.

1.
Y.
Hiruma
,
H.
Nagata
, and
T.
Takenaka
,
J. Appl. Phys.
104
,
124106
(
2008
).
2.
Y.
Hiruma
,
Y.
Imai
,
Y.
Watanabe
,
H.
Nagata
, and
T.
Takenaka
,
Appl. Phys. Lett.
92
,
262904
(
2008
).
3.
Y.
Makiuchi
,
R.
Aoyagi
,
Y.
Hiruma
,
H.
Nagata
, and
T.
Takenaka
,
Jpn. J. Appl. Phys., Part 1
44
,
4350
(
2005
).
4.
H.
Nagata
,
M.
Yoshida
,
Y.
Makiuchi
, and
T.
Takenaka
,
Jpn. J. Appl. Phys., Part 1
42
,
7401
(
2003
).
5.
T. R.
Shrout
and
S. J.
Zhang
,
J. Electroceram.
19
,
113
(
2007
).
6.
T.
Takenaka
,
K. I.
Maruyama
, and
K.
Sakata
,
Jpn. J. Appl. Phys., Part 1
30
,
2236
(
1991
).
7.
R.
Ranjan
and
A.
Dviwedi
,
Solid State Commun.
135
(
6
),
394
(
2005
).
8.
C.
Ma
and
X.
Tan
,
Solid State Commun.
150
,
1497
(
2010
).
9.
W.
Jo
,
J. E.
Daniels
,
J. L.
Jones
,
X.
Tan
,
P. A.
Thomas
,
D.
Damjanovic
, and
J.
Rödel
,
J. Appl. Phys.
109
,
014110
(
2011
).
10.
G.
Picht
,
J.
Töpfer
, and
E.
Hennig
,
J. Eur. Ceram. Soc.
30
,
3445
(
2010
).
11.
W.
Jo
and
J.
Rödel
,
Appl. Phys. Lett.
99
,
042901
(
2011
).
12.
F.
Cordero
,
F.
Craciun
,
F.
Trequattrini
,
E.
Mercadelli
, and
C.
Galassi
,
Phys. Rev. B
81
,
144124
(
2010
).
13.
J. E.
Daniels
,
W.
Jo
,
J.
Roüdel
, and
J. L.
Jones
,
Appl. Phys. Lett.
95
,
032904
(
2009
).
14.
H.
Simons
,
J.
Daniels
,
W.
Jo
,
R.
Dittmer
,
A.
Studer
,
M.
Avdeev
,
J.
Rödel
, and
M.
Hoffman
,
Appl. Phys. Lett.
98
,
082901
(
2011
).
15.
C.
Ma
,
H.
Guo
,
S. P.
Beckman
, and
X.
Tan
,
Phys. Rev. Lett.
109
,
107602
(
2012
).
16.
W.
Jo
,
R.
Dittmer
,
M.
Acosta
,
J.
Zang
,
C.
Groh
,
E.
Sapper
,
K.
Wang
, and
J.
Rödel
,
J. Electroceram.
29
,
71
(
2012
).
17.
H.
Zhang
,
P.
Xu
,
E.
Patterson
,
J.
Zang
,
S.
Jiang
, and
J.
Rödel
,
J. Eur. Ceram. Soc.
35
,
2501
(
2015
).
18.
M.
Acosta
,
W.
Jo
, and
J.
Rödel
,
J. Am. Ceram. Soc.
97
(
6
),
1937
(
2014
).
19.
H.-S.
Han
,
W.
Jo
,
J.-K.
Kang
,
C.-W.
Ahn
,
I. W.
Kim
,
K.-K.
Ahn
, and
J.-S.
Lee
,
J. Appl. Phys.
113
,
154102
(
2013
).
20.
J. L.
Jones
,
M.
Hoffman
, and
K. J.
Bowman
,
J. Appl. Phys.
98
,
024115
(
2005
).
21.
A.
Pramanick
,
J. E.
Daniels
, and
J. L.
Jones
,
J. Am. Ceram. Soc.
92
,
2300
(
2009
).
22.
A.
Pramanick
,
D.
Damjanovic
,
J. E.
Daniels
,
J. C.
Nino
, and
J. L.
Jones
,
J. Am. Ceram. Soc.
94
,
293
(
2011
).
23.
H.
Kungl
,
R.
Theissmann
,
M.
Knapp
,
C.
Baehtz
,
H.
Fuess
,
S.
Wagner
,
T.
Fett
, and
M. J.
Hoffmann
,
Acta Mater.
55
,
1849
(
2007
).
24.
M. C.
Ehmke
,
N. H.
Khansur
,
J. E.
Daniels
,
J. E.
Blendell
, and
K. J.
Bowman
,
Acta Mater.
66
,
340
(
2014
).
25.
M.
Hinterstein
,
M.
Hoelzel
,
J.
Rouquette
,
J.
Haines
,
J.
Glaum
,
H.
Kungl
, and
M.
Hoffman
,
Acta Mater.
94
,
319
(
2015
).
26.
C.
Groh
,
W.
Jo
, and
J.
Rödel
,
J. Appl. Phys.
115
,
234107
(
2014
).
27.
J. E.
Daniels
and
M.
Drakopoulos
,
J. Synchrotron Radiat.
16
,
463
(
2009
).
28.
J. L.
Jones
,
A.
Pramanick
, and
J. E.
Daniels
,
Appl. Phys. Lett.
93
,
152904
(
2008
).
29.
J. E.
Daniels
,
A.
Pramanick
, and
J. L.
Jones
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
56
,
1539
(
2009
).
30.
A. P.
Hammersley
,
S. O.
Svensson
,
M.
Hanfland
,
A. N.
Fitch
, and
D.
Hausermann
,
High Pressure Res.
14
,
235
(
1996
).
31.
S.
Matthies
,
L.
Lutteroti
, and
H. R.
Wenk
,
J. Appl. Crystallogr.
30
,
31
(
1997
).
32.
S.
Matthies
,
H.-R.
Wenk
, and
G. W.
Vinel
,
J. Appl. Crystallogr.
21
,
285
(
1988
).
33.
N. C.
Popa
and
D.
Balzar
,
J. Appl. Crystallogr.
34
,
187
(
2001
).
34.
W.
Jo
,
S.
Schaab
,
E.
Sapper
,
L. A.
Schmitt
,
H. J.
Kleebe
,
A. J.
Bell
, and
J.
Rodel
,
J. Appl. Phys.
110
,
074106
(
2011
).
35.
J. E.
Daniels
,
W.
Jo
,
J.
Rodel
,
D.
Rytz
, and
W.
Donner
,
Appl. Phys. Lett.
98
(
25
),
252904
(
2011
).
36.
D.
Maurya
,
M.
Murayama
,
A.
Pramanick
,
W. T.
Reynolds
,
K.
An
, and
S.
Priya
,
J. Appl. Phys.
113
,
114101
(
2013
).
37.
M.
Hinterstein
,
L. A.
Schmitt
,
M.
Hoelzel
,
W.
Jo
,
J.
Rödel
,
H.-J.
Kleebe
, and
M.
Hoffman
,
Appl. Phys. Lett.
106
,
222904
(
2015
).
38.
J.
Kreisel
,
P.
Bouvier
,
B.
Dkhil
,
P.
Thomas
,
A.
Glazer
,
T.
Welberry
,
B.
Chaabane
, and
M.
Mezouar
,
Phy. Rev. B
68
,
014113
(
2003
).
39.
Y.
Guo
,
Y.
Liu
,
R. L.
Withers
,
F.
Brink
, and
H.
Chen
,
Chem. Mater.
23
,
219
(
2010
).
40.
D.
Maurya
,
A.
Pramanick
,
M.
Feygenson
,
J. C.
Neuefeind
,
R. J.
Bodnar
, and
S.
Priya
,
J. Mater. Chem. C
2
,
8423
(
2014
).
41.
P. B.
Groszewicz
,
H.
Breitzke
,
R.
Dittmer
,
E.
Sapper
,
W.
Jo
,
G.
Buntkowsky
, and
J.
Rödel
,
Phys. Rev. B
90
,
220104
(
2014
).
42.
S.
Choudhury
,
Y. L.
Li
,
C. E.
Krill
 III
, and
L. Q.
Chen
,
Acta Mater.
53
(
20
),
5313
5321
(
2005
).
43.
E.
Salje
and
H.
Zhang
,
Phase Transitions
82
(
6
),
452
469
(
2009
).
44.
E. K.
Salje
,
Phase Transitions in Ferroelastic and Co-elastic Crystals
(
Cambridge University Press
,
1991
).
45.
D.
Damjanovic
,
J. Am. Ceram. Soc.
88
(
10
),
2663
2676
(
2005
).
46.
L.
Daniel
,
D. A.
Hall
, and
P. J.
Withers
,
Mech. Mater.
71
(
0
),
85
100
(
2014
).
47.
J. E.
Daniels
,
W.
Jo
,
J.
Rödel
,
V.
Honkimäki
, and
J. L.
Jones
,
Acta Mater.
58
,
2103
(
2010
).
48.
M. J.
Hoffmann
,
M.
Hammer
,
A.
Endriss
, and
D. C.
Lupascu
,
Acta Mater.
49
,
1301
(
2001
).
49.
A.
Endriss
,
M.
Hammer
,
M. J.
Hoffmann
,
A.
Kolleck
, and
G. A.
Schneider
,
J. Eur. Ceram. Soc.
19
,
1229
(
1999
).
50.
D.
Zhou
and
M.
Kamlah
,
Acta Mater.
54
,
1389
(
2006
).
51.
S. T.
Zhang
,
A. B.
Kounga
,
E.
Aulbach
,
H.
Ehrenberg
, and
J.
Rödel
,
Appl. Phys. Lett.
91
,
112906
(
2007
).
52.
S. T.
Zhang
,
A. B.
Kounga
,
E.
Aulbach
,
T.
Granzow
,
W.
Jo
,
H. J.
Kleebe
, and
J.
Rödel
,
J. Appl. Phys.
103
,
034107
(
2008
).
53.
W.
Jo
,
T.
Granzow
,
E.
Aulbach
,
J.
Rödel
, and
D.
Damjanovic
,
J. Appl. Phys.
105
,
094102
(
2009
).
You do not currently have access to this content.