The last 4 years have seen the rapid emergence of a new solar cell technology based on organic-inorganic lead halide perovskites, primarily CH3NH3PbI3 and related halides involving Cl and Br. Debate continues on the role of excitons and free carriers in these materials. Recent studies report values of exciton binding energy for the iodide ranging from 0.7 meV to 200 meV, with vastly different implications for device operation and design. In the present work, previously neglected polarons are shown likely to have a major impact in determining excitonic properties. Polaronic exciton binding energies calculated using effective longitudinal optical phonon energies, deduced from permittivity measurements, are shown consistent with experimental energies for good quality samples of CH3NH3PbI3 and CH3NH3PbBr3, as determined over a large temperature range from optical absorption data. Bandgaps determined simultaneously show a discontinuity at the orthorhombic to tetragonal phase transition for the iodide, but not for the bromide.

1.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
,
Nat. Photonics
8
,
506
514
(
2014
).
2.
J. M.
Frost
,
K. T.
Butler
,
F.
Brivio
,
C. H.
Hendon
,
M.
van Schilfgaarde
, and
A.
Walsh
,
Nano Lett.
14
,
2584
(
2014
).
3.
R.
Nanguneri
and
J.
Parkhill
, preprint arXiv:1411.1110.
4.
J.
Even
,
L.
Pedesseau
, and
C.
Katan
,
J. Phys. Chem. C
118
,
11566
(
2014
).
5.
E.
Menéndez-Proupin
,
P.
Palacios
,
P.
Wahnón
, and
J. C.
Conesa
,
Phys. Rev. B
90
,
045207
(
2014
).
6.
R. J.
Elliott
,
Phys. Rev.
108
,
1384
1389
(
1957
).
7.
H.
Di Rocco
and
A.
Cruzado
,
Acta Phys. Pol. A
122
,
666
669
(
2012
).
8.
See supplementary material at http://dx.doi.org/10.1063/1.4936418 for more experimental details, results and discussions.
9.
M.
Saba
,
M.
Cadelano
,
D.
Marongiu
,
F.
Chen
,
V.
Sarritzu
,
N.
Sestu
,
C.
Figus
,
M.
Aresti
,
R.
Piras
,
A.
Geddo Lehmann
 et al.,
Nat. Commun.
5
,
5049
(
2014
).
10.
Y.
Yamada
,
T.
Nakamura
,
M.
Endo
,
A.
Wakamiya
, and
Y.
Kanemitsu
,
IEEE J. Photovoltaics
5
,
401
(
2015
).
11.
G.
Grancini
,
A. R.
Srimath Kandada
,
J. M.
Frost
,
A. J.
Barker
,
M.
De Bastiani
,
M.
Gandini
,
S.
Marras
,
G.
Lanzani
,
A.
Walsh
, and
A.
Petrozza
,
Nat. Photonics
9
,
695
(
2015
).
12.
C.
Sheng
,
C.
Zhang
,
Y.
Zhai
,
K.
Mielczarek
,
W.
Wang
,
W.
Ma
,
A.
Zakhidov
, and
Z. V.
Vardeny
,
Phys. Rev. Lett.
114
,
116601
(
2015
).
13.
T.
Ishihara
,
J. Lumin.
60–61
,
269
274
(
1994
).
14.
G. C.
Papavassiliou
,
G. A.
Mousdis
,
I. B.
Koutselas
, and
G. J.
Papaioannou
,
Int. J. Mod. Phys. B
15
,
3727
3731
(
2001
).
15.
M.
Hirasawa
,
T.
Ishihara
, and
T.
Goto
,
J. Phys. Soc. Jpn.
63
,
3870
3879
(
1994
).
16.
D.
Shi
,
V.
Adinolfi
,
R.
Comin
,
M.
Yuan
,
E.
Alarousu
,
A.
Buin
,
Y.
Chen
,
S.
Hoogland
,
A.
Rothenberger
, and
K.
Katsiev
,
Science
347
,
519
522
(
2015
).
17.
V.
D'Innocenzo
,
G.
Grancini
,
M. J. P.
Alcocer
,
A. R. S.
Kandada
,
S. D.
Stranks
,
M. M.
Lee
,
G.
Lanzani
,
H. J.
Snaith
, and
A.
Petrozza
,
Nat. Commun.
5
,
3586
(
2014
).
18.
F.
Huang
,
Y.
Dkhissi
,
W.
Huang
,
M.
Xiao
,
I.
Benesperi
,
S.
Rubanov
,
Y.
Zhu
,
X.
Lin
,
L.
Jiang
, and
Y.
Zhou
,
Nano Energy
10
,
10
18
(
2014
).
19.
S.
Melissen
,
F.
Labat
,
P.
Sautet
, and
T.
Le Bahers
,
Phys. Chem. Chem. Phys.
17
,
2199
(
2014
).
20.
Q.
Lin
,
A.
Armin
,
R. C. R.
Nagiri
,
P. L.
Burn
, and
P.
Meredith
,
Nat. Photonics
9
,
106
(
2014
).
21.
J. T.
Devreese
,
Rep. Prog. Phys.
72
,
066501
(
2009
).
22.
G.
Mahan
, “
Polarons in ionic crystals and polar semiconductors
,” in
Proceedings of the 1971 Antwerp Advanced Study Institute
(
1972
).
23.
R. W.
Hellwarth
and
I.
Biaggio
,
Phys. Rev. B
60
,
299
(
1999
).
24.
25.
C.
Carabatos-Nédelec
,
M.
Oussaid
, and
K.
Nitsch
,
J. Raman Spectrosc.
34
,
388
393
(
2003
).
26.
F.
Brivio
,
J. M.
Frost
,
J. M.
Skelton
,
A. J.
Jackson
,
O. J.
Weber
,
M. T.
Weller
,
A. R.
Goni
,
A.
Leguy
,
P. R.
Barnes
, and
A.
Walsh
, preprint arXiv:150407508.
27.
D.
Rousseau
,
R. P.
Bauman
, and
S.
Porto
,
J. Raman Spectrosc.
10
,
253
290
(
1981
).
28.
R. A.
Evarestov
,
E.
Blokhin
,
D.
Gryaznov
,
E. A.
Kotomin
, and
J.
Maier
,
Phys. Rev. B
83
,
134108
(
2011
).
29.
A.
Maalej
,
Y.
Abid
,
A.
Kallel
,
A.
Daoud
,
A.
Lautié
, and
F.
Romain
,
Solid State Commun.
103
,
279
284
(
1997
).
30.
M.
Ledinsky
,
P.
Löper
,
B.
Niesen
,
J.
Holovsky
,
S.-J.
Moon
,
J.-H.
Yum
,
S.
De Wolf
,
A.
Fejfar
, and
C.
Ballif
,
J. Phys. Chem. Lett.
6
,
401
(
2015
).
31.
A.
Chaves
and
S.
Porto
,
Solid State Commun.
13
,
865
868
(
1973
).
32.
C.
Wehrenfennig
,
M.
Liu
,
H. J.
Snaith
,
M. B.
Johnston
, and
I.
Herz
,
Energy Environ. Sci.
7
,
2269
(
2014
).
33.
M.
Maeda
,
M.
Hattori
,
A.
Hotta
, and
I.
Suzuki
,
J. Phys. Soc. Jpn.
66
,
1508
1511
(
1997
).
34.
H.
Kunugita
,
T.
Hashimoto
,
Y.
Kiyota
,
Y.
Udagawa
,
Y.
Takeoka
,
Y.
Nakamura
,
J.
Sano
,
T.
Matsushita
,
T.
Kondo
,
T.
Miyasaka
 et al.,
Chem. Lett.
44
,
852
854
(
2015
).
35.
A.
Miyata
,
A.
Mitioglu
,
P.
Plochocka
,
O.
Portugall
,
J. T.-W.
Wang
,
S. D.
Stranks
,
H. J.
Snaith
, and
R. J.
Nicholas
,
Nat. Phys.
11
,
582
(
2015
).
36.
C.
Wehrenfennig
,
M.
Liu
,
H. J.
Snaith
,
M. B.
Johnston
, and
L. M.
Herz
,
J. Phys. Chem. Lett.
5
,
1300
1306
(
2014
).
37.
D. W.
de Quilettes
,
S. M.
Vorpahl
,
S. D.
Stranks
,
H.
Nagaoka
,
G. E.
Eperon
,
M. E.
Ziffer
,
H. J.
Snaith
, and
D. S.
Ginger
,
Science
348
,
5333
(
2015
).
38.
R.
Passler
,
E.
Griebl
,
H.
Riepl
,
G.
Lautner
,
S.
Bauer
,
H.
Preis
,
W.
Gebhardt
,
B.
Buda
,
D.
As
, and
D.
Schikora
,
J. Appl. Phys.
86
,
4403
4411
(
1999
).

Supplementary Material

You do not currently have access to this content.