This investigation aims at studying–by in situ grazing-incidence small-angle x-ray scattering–the process of growth of hexagonal CoSi2 nanoplatelets endotaxially buried in a Si(001) wafer. The early formation of spherical Co nanoparticles with bimodal size distribution in the deposited silica thin film during a pretreatment at 500 °C and their subsequent growth at 700 °C were also characterized. Isothermal annealing at 700 °C promotes a drastic reduction in the number of the smallest Co nanoparticles and a continuous decrease in their volume fraction in the silica thin film. At the same time, Co atoms diffuse across the SiO2/Si(001) interface into the silicon wafer, react with Si, and build up thin hexagonal CoSi2 nanoplatelets, all of them with their main surfaces parallel to Si{111} crystallographic planes. The observed progressive growths in thickness and lateral size of the hexagonal CoSi2 nanoplatelets occur at the expense of the dissolution of the small Co nanoparticles that are formed during the pretreatment at 500 °C and become unstable at the annealing temperature (700 °C). The kinetics of growth of the volume fraction of hexagonal platelets is well described by the classical Avrami equation.

1.
B. M.
Boyerinas
,
A. L.
Roytburd
, and
H. A.
Bruck
,
Nano Lett.
14
,
1818
1822
(
2014
).
2.
J. M.
Higgins
,
P.
Carmichael
,
A. L.
Schmitt
,
S.
Lee
,
J. P.
Degrave
, and
S.
Jin
,
ACS Nano
5
,
3268
3277
(
2011
).
3.
S.-Y.
Chen
,
P.-H.
Yeh
,
W.-W.
Wu
,
U.-S.
Chen
,
Y.-L.
Chueh
,
Y.-C.
Yang
,
S.
Gwo
, and
L.-J.
Chen
,
ACS Nano
5
,
9202
9207
(
2011
).
4.
H.
Wang
,
Z.
Zhang
,
L. M.
Wong
,
S.
Wang
,
Z.
Wei
,
G. P.
Li
,
G.
Xing
,
D.
Guo
,
D.
Wang
, and
T.
Wu
,
ACS Nano
4
,
2901
2909
(
2010
).
5.
Y.-C.
Chou
,
W.-W.
Wu
,
L.-J.
Chen
, and
K.-N.
Tu
,
Nano Lett.
9
,
2337
2342
(
2009
).
6.
Y.
Lei
,
W.
Cai
, and
G.
Wilde
,
Prog. Mater. Sci.
52
,
465
539
(
2007
).
7.
C. L.
Hsin
,
J. H.
He
,
C. Y.
Lee
,
W. W.
Wu
,
P. H.
Yeh
,
L. J.
Chen
, and
Z. L.
Wang
,
Nano Lett.
7
,
1799
1803
(
2007
).
8.
A. L.
Schmitt
,
M. J.
Bierman
,
D.
Schmeisser
,
F. J.
Himpsel
, and
S.
Jin
,
Nano Lett.
6
,
1617
1621
(
2006
).
9.
G.
Kellermann
,
L. A.
Montoro
,
L. J.
Giovanetti
,
P. C.
dos
,
S.
Claro
,
L.
Zhang
,
A. J.
Ramirez
,
F. G.
Requejo
, and
A. F.
Craievich
,
Appl. Phys. Lett.
100
,
063116
(
2012
).
10.
G.
Kellermann
,
L. A.
Montoro
,
L.
Giovanetti
,
P. C.
dos
,
S.
Claro
,
L.
Shang
,
A.
Ramirez
,
F. G.
Requejo
, and
A.
Craievich
,
Phys. Chem. Chem. Phys.
17
,
4945
4951
(
2014
).
11.
F.
Léonard
and
A. A.
Talin
,
Nat. Nanotechnol.
6
,
773
783
(
2011
).
12.
C.
Chuang
,
W. Y.
Chang
,
W. H.
Chen
,
J. S.
Tsay
,
W. B.
Su
,
H. W.
Chang
, and
Y. D.
Yao
,
Thin Solid Films
519
,
8371
8374
(
2011
).
13.
H. A.
Atwater
and
A.
Polman
,
Nat. Mater.
9
,
205
213
(
2010
).
14.
C.-Y.
Lee
,
M.-P.
Lu
,
K.-F.
Liao
,
W.-W.
Wu
, and
L.-J.
Chen
,
Appl. Phys. Lett.
93
,
113109
(
2008
).
15.
M. D.
Kelzenberg
,
D. B.
Turner-Evans
,
B. M.
Kayes
,
M. A.
Filler
,
M. C.
Putnam
,
N. S.
Lewis
, and
H. A.
Atwater
,
Nano Lett.
8
,
710
714
(
2008
).
16.
W.
Lu
and
C. M.
Lieber
,
Nat. Mater.
6
,
841
850
(
2007
).
17.
K.
Kawamura
,
S.
Inagaki
,
T.
Saiki
,
R.
Nakamura
,
Y.
Kataoka
, and
M.
Kase
,
Jpn. J. Appl. Phys., Part 1
46
,
7268
(
2007
).
18.
Z.
He
,
D.
Smith
, and
P.
Bennett
,
Phys. Rev. Lett.
93
,
256102
(
2004
).
19.
P. A.
Bennett
,
D. J.
Smith
,
Z.
He
,
M. C.
Reuter
,
A. W.
Ellis
, and
F. M.
Ross
,
Nanotechnology
22
,
305606
(
2011
).
20.
P. A.
Bennett
,
Z.
He
,
D. J.
Smith
, and
F. M.
Ross
,
Thin Solid Films
519
,
8434
8440
(
2011
).
21.
F.
Corni
,
R.
Tonini
,
G.
Ottaviani
,
S.
Alberici
,
D.
Erbetta
, and
T.
Marangon
,
Microelectron. Eng.
76
,
343
348
(
2004
).
22.
J. L.
Tedesco
,
J. E.
Rowe
, and
R. J.
Nemanich
,
J. Appl. Phys.
105
,
083721
083727
(
2009
).
23.
R. C.
Chau
,
B.
Doyle
,
S.
Datta
,
K.
Jack
, and
K.
Zhang
,
Nat. Mater.
6
,
810
812
(
2007
).
24.
M.
Rauscher
,
T.
Salditt
, and
H.
Spohn
,
Phys. Rev. B
52
,
16855
16863
(
1995
).
25.
P.
Müller-Buschbaum
,
Anal. Bioanal. Chem.
376
,
3
10
(
2003
).
26.
G.
Renaud
,
R.
Lazzari
, and
F.
Leroy
,
Surf. Sci. Rep.
64
,
255
380
(
2009
).
27.
M.
Schwartzkopf
,
G.
Santoro
,
Ca. J.
Brett
,
A.
Rothkirch
,
O.
Polonskyi
,
A.
Hinz
,
E.
Metwalli
,
Y.
Yao
,
T.
Strunskus
,
F.
Faupel
,
P.
Müller-Buschbaum
, and
S. V.
Roth
,
ACS Appl. Mater. Interfaces
7
,
13547
13556
(
2015
).
28.
S. V.
Roth
,
G.
Santoro
,
J. F. H.
Risch
,
S.
Yu
,
M.
Schwartzkopf
,
T.
Boese
,
R.
Döhrmann
,
P.
Zhang
,
B.
Besner
,
P.
Bremer
,
D.
Rukser
,
M. A.
Rübhausen
,
N. J.
Terrill
,
P. A.
Staniec
,
Y.
Yao
,
E.
Metwalli
, and
P.
Müller-Buschbaum
,
ACS Appl. Mater. Interfaces
7
,
12470
12477
(
2015
).
29.
M.
Schwartzkopf
,
A.
Buffeta
,
V.
Körstgens
,
E.
Metwalli
,
K.
Schlage
,
G.
Benecke
,
J.
Perlich
,
M.
Rawolle
,
A.
Rothkirch
,
B.
Heidmann
,
G.
Herzog
,
P.
Müller-Buschbaum
,
R.
Röhlsberger
,
R.
Gehrke
,
N.
Stribeckb
, and
S. V.
Roth
,
Nanoscale
5
,
5053
(
2013
).
30.
C.
Revenant
,
G.
Renaud
,
R.
Lazzari
, and
J.
Jupille
,
Phys. Rev. B
79
,
235424
(
2009
).
31.
Y.-C.
Chou
,
K.-C.
Lu
, and
K. N.
Tu
,
Mater. Sci. Eng., R
70
,
112
125
(
2010
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4936377 for additional description of the GISAXS procedures, analysis, and modeling.
33.
A.
Guinier
,
Small-Angle Scattering of X-rays
(
John Wiley
,
New York
,
1955
).
34.
M.
Avrami
,
J. Chem. Phys.
7
,
1103
1112
(
1939
).
35.
M.
Avrami
,
J. Chem. Phys.
8
,
212
224
(
1940
).
36.
M.
Avrami
,
J. Chem. Phys.
9
,
177
184
(
1941
).
37.
T. J. W.
De Bruijn
,
W. A.
De Jong
, and
P. J.
Van Den Berg
,
Thermochim. Acta
45
,
305
314
(
1981
).

Supplementary Material

You do not currently have access to this content.