To understand the role of the nanophase in reducing the lattice contribution of the thermal conductivity of thermoelectrics, the structure and phonon density of a p-type half-Heusler thermoelectric ingot (ingot-HH, nominal composition of (Hf0.5Zr0.5)Co(Sb0.8Sn0.2)), and its nano form prepared from ball milling (nano-HH), were studied using neutron diffraction and neutron inelastic scattering techniques. They are both cubic, F4¯3m, with lattice parameters a = 6.0649(3) Å (nano) and 6.0629(1) Å (ingot), but the nano and ingot materials exhibit markedly different generalized phonon density-of-states (GDOS) at 300 K due to the substantially reduced grain size in the nano sample. These overall changes in GDOS, together with the increase in grain boundary scattering, account for the sharp reduction of the thermal conductivity in the nano-hot-pressed (nano-hp-HH) sample, which has a similar average grain size to that of nano-HH.

1.
Harvesting Energy Through Thermoelectrics: Power Generation and Cooling
, edited by
T. M.
Tritt
and
M. A.
Subramanian
(
Mater. Res. Soc. Symp. Proc.
,
2006
), pp.
188
195
.
2.
Fr.
Heusler
,
Verh. Dtsch. Phys. Ges.
5
,
219
(
1903
).
3.
S.
Chen
and
Z.
Ren
,
Mater. Today
16
(
10
),
387
395
(
2013
).
4.
C.
Uher
,
J.
Yang
,
S.
Hu
,
D. T.
Morelli
, and
G. P.
Meisner
,
Phys. Rev. B
59
(
13
),
8615
(
1999
).
5.
J.
Yang
,
H.
Li
,
T.
Wu
,
W.
Zhang
,
L.
Chen
, and
J.
Yang
,
Adv. Funct. Mater.
18
,
2880
2888
(
2008
).
6.
P.
Larson
,
S. D.
Mahanti
,
S.
Sportouch
, and
M. G.
Kanatzidis
,
Phys. Rev. B
59
(
24
),
15660
(
1999
).
7.
Q.
Shen
,
L.
Chen
,
T.
Goto
,
T.
Hirai
,
J.
Yang
,
G. P.
Meisner
, and
C.
Uher
,
Appl. Phys. Lett.
79
,
4165
(
2001
).
8.
T.
Graf
,
C.
Felser
, and
S. S. P.
Parkin
,
Prog. Solid State Chem.
39
(
1
),
1
50
(
2011
).
9.
W.
Wong-Ng
and
J.
Yang
,
Powder Diff.
28
(
1
),
32
43
(
2013
).
10.
W.
Jeitschko
,
Metall. Trans. A
1
,
3159
(
1970
).
11.
J.
Tobola
,
J.
Pierre
,
S.
Kaprzyk
,
R. V.
Skolozdra
, and
M. A.
Kouacou
,
J. Magn. Magn. Mater.
159
,
192
(
1996
).
12.
X.
Yan
,
W.
Liu
,
H.
Wang
,
S.
Chen
,
J.
Shiomi
,
K.
Esfarjani
,
H.
Wang
,
D.
Wang
,
G.
Chen
, and
Z.
Ren
,
Energy Environ. Sci.
5
,
7543
(
2012
).
13.
S. R.
Culp
,
J. W.
Simonson
,
J. P.
Poon
,
V.
Ponnambalam
,
J.
Edwards
, and
T. M.
Tritt
,
Appl. Phys. Let.
93
,
022105
(
2008
).
14.
B.
Balke
,
J.
Barth
,
M.
Schwall
,
G. H.
Fecher
, and
C.
Felser
,
J. Electron. Mater.
40
,
702
(
2011
).
15.
X.
Yan
,
G.
Joshi
,
W.
Liu
,
Y.
Lan
,
H.
Wang
,
S.
Lee
,
J. W.
Simonson
,
S. J.
Poon
,
T. M.
Tritt
,
G.
Chen
, and
Z. F.
Ren
,
Nano Lett.
11
(
2
),
556
560
(
2011
).
16.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
,
D.
Vashaee
,
X.
Chen
,
J.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Science
320
,
634
638
(
2008
).
17.
G.
Joshi
,
H.
Lee
,
Y.
Lan
,
X.
Wang
,
G.
Zhu
,
D.
Wang
,
R. W.
Gould
,
D. C.
Cuff
,
M. Y.
Tang
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
8
(
12
),
4670
4674
(
2008
).
18.
G.
Joshi
,
X.
Yan
,
H.
Wang
,
W.
Liu
,
G.
Chen
, and
Z.
Ren
,
Adv. Energy Mater.
1
,
643
647
(
2011
).
19.
G.
Joshi
,
T.
Dahal
,
S.
Chen
,
H.
Wang
,
J.
Shiomi
,
G.
Chen
, and
Z.
Ren
,
Nano Energy
2
,
82
87
(
2013
).
20.

Certain commercial equipment, instruments, materials, or software are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

21.
A. C.
Larson
and
R. B.
von Dreele
, General Structure Analysis System (GSAS), Los Alamos National Laboratory,
Report No. LAUR 86–748
,
Los Alamos
,
USA
(
2004
).
22.
H. M.
Rietveld
,
J. Appl. Cryst.
2
,
65
71
(
1969
).
23.
G.
Melnyk
,
E.
Bauer
,
P.
Rogl
,
R.
Skolozdra
, and
E.
Seidl
,
J. Alloys Compd.
296
,
235
(
2000
).
24.
J. R. D.
Copley
and
J. C.
Cook
,
Chem. Phys.
292
,
477
(
2003
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4936163 for results of Rietveld refinements (Table S1) and the refined atomic coordinates and atomic displacement parameters (Table S2).
26.
T.
Sekimoto
,
K.
Kurosaki
,
H.
Muta
, and
S.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
46
,
L673
(
2007
).
27.
A. F.
Wells
,
Structural Inorganic Chemistry
, 5th ed. (
Clarendon Press
,
Oxford
,
1984
), p.
1288
.
28.
C.
Lai
,
J.
Ma
, and
J.-C.
Zhu
,
Mater. Sci. Forum
762
,
471
(
2013
).
29.
J.
Shiomi
,
K.
Esfarjani
, and
G.
Chen
,
Phys. Rev. B
84
,
104302
(
2011
).
30.
W.
Xie
,
J.
He
,
H. J.
Kang
,
X.
Tang
,
S.
Zhu
,
M.
Laver
,
S.
Wang
,
J. R. D.
Copley
,
C. M.
Brown
,
Q.
Zhang
, and
T. M.
Tritt
,
Nano Lett.
10
(
9
),
3283
3289
(
2010
).
31.
C.
Dhital
,
D. L.
Abernathy
,
G.
Zhu
,
Z.
Ren
,
D.
Broido
, and
S. D.
Wilson
,
Phys. Rev. B
86
,
214303
(
2012
).
32.
R. T.
Azuah
,
L. R.
Kneller
,
Y.
Qiu
,
P. L. W.
Tregenna-Piggott
,
C. M.
Brown
,
J. R. D.
Copley
, and
R. M.
Dimeo
,
Res. Natl. Inst. Stand. Technol.
114
,
341
(
2009
).

Supplementary Material

You do not currently have access to this content.