Negative thermal expansion (NTE) was investigated for Ga1−xMnxN0.8Mn3 (0.1 ≤ x ≤ 0.3). As x increases, the temperature range where lattice contracts upon heating becomes broad and shifts to lower temperatures. The coefficient of linear thermal expansion beyond −40 ppm/K with a temperature interval of ∼50 K was obtained around room temperature in x = 0.2 and 0.25. Local lattice distortion which was thought to be intimately related to NTE is invisible in the X-ray pair distribution function of x = 0.3. Furthermore, a zero-field-cooling exchange bias was observed as a result of competing ferromagnetic (FM) and antiferromagnetic (AFM) orders. The concomitant FM order serves as an impediment to the growth of the AFM order, and thus broadens the temperature range of NTE. Our result suggests that NTE can be achieved in antiperovskite manganese nitrides by manipulating the magnetic orders without distorting the local structure.

1.
C. P.
Romao
,
K. J.
Miller
,
C. A.
Whitman
,
M. A.
White
, and
B. A.
Marinkovic
,
Negative Thermal Expansion (Thermomiotic) Materials
(
Elsevier
,
Amsterdam
,
2013
).
2.
J.
Chen
,
L.
Hu
,
J. X.
Deng
, and
X. R.
Xing
,
Chem. Soc. Rev.
44
,
3522
(
2015
).
3.
K.
Takenaka
and
H.
Takagi
,
Appl. Phys. Lett.
87
,
261902
(
2005
).
4.
Y.
Sun
,
C.
Wang
,
Y. C.
Wen
,
K. G.
Zhu
, and
J. T.
Zhao
,
Appl. Phys. Lett.
91
,
231913
(
2007
).
5.
R. J.
Huang
,
L. F.
Li
,
F. S.
Cai
,
X. D.
Xu
, and
L. H.
Qian
,
Appl. Phys. Lett.
93
,
081902
(
2008
).
6.
J.
Matsuno
,
K.
Takenaka
,
H.
Takagi
,
D.
Matsumura
,
Y.
Nishihata
, and
J.
Mizuki
,
Appl. Phys. Lett.
94
,
181904
(
2009
).
7.
K.
Takenaka
and
H.
Takagi
,
Appl. Phys. Lett.
94
,
131904
(
2009
).
8.
T.
Hamada
and
K.
Takenaka
,
J. Appl. Phys.
109
,
07E309
(
2011
).
9.
X. Y.
Song
,
Z. H.
Sun
,
Q. Z.
Huang
,
M.
Rettenmayr
,
X. M.
Liu
,
M.
Seyring
,
G. N.
Li
,
G. H.
Rao
, and
F. X.
Yin
,
Adv. Mater.
23
,
4690
(
2011
).
10.
C.
Wang
,
L. H.
Chu
,
Q. R.
Yao
,
Y.
Sun
,
M. M.
Wu
,
L.
Ding
,
J.
Yan
,
Y. Y.
Na
,
W. H.
Tang
,
G. N.
Li
,
Q. Z.
Huang
, and
J.
Lynn
,
Phys. Rev. B
85
,
220103
(
2012
).
11.
P.
Tong
,
D.
Louca
,
G.
King
,
A.
Llobet
,
J. C.
Lin
, and
Y. P.
Sun
,
Appl. Phys. Lett.
102
,
041908
(
2013
).
12.
J.
Tan
,
R. J.
Huang
,
W.
Wang
,
W.
Li
,
Y. Q.
Zhao
,
S. P.
Li
,
Y. M.
Han
,
C. J.
Huang
, and
L. F.
Li
,
Nano Res.
8
,
2302
2307
(
2015
).
13.
J. C.
Lin
,
P.
Tong
,
W.
Tong
,
S.
Lin
,
B. S.
Wang
,
W. H.
Song
,
Y. M.
Zou
, and
Y. P.
Sun
,
Appl. Phys. Lett.
106
,
082405
(
2015
).
14.
T. A.
Mary
,
J. S. O.
Evans
,
T.
Vogt
, and
A. W.
Sleight
,
Science
272
,
90
(
1996
).
15.
B. K.
Greve
,
K. L.
Martin
,
P. L.
Lee
,
P. J.
Chupas
,
K. W.
Chapman
, and
A. P.
Wilkinson
,
J. Am. Chem. Soc.
132
,
15496
(
2010
).
16.
P.
Tong
,
B. S.
Wang
, and
Y. P.
Sun
,
Chin. Phys. B
22
,
067501
(
2013
).
17.
K.
Kodama
,
S.
Iikubo
,
K.
Takenaka
,
M.
Takigawa
,
H.
Takagi
, and
S.
Shamoto
,
Phys. Rev. B
81
,
224419
(
2010
).
18.
K.
Takenaka
,
M.
Ichigo
,
T.
Hamada
,
A.
Ozawa
,
T.
Shibayama
,
T.
Inagaki
, and
K.
Asano
,
Sci. Technol. Adv. Mater.
15
,
015009
(
2014
).
19.
S.
Iikubo
,
K.
Kodama
,
K.
Takenaka
,
H.
Takagi
,
M.
Takigawa
, and
S.
Shamoto
,
Phys. Rev. Lett.
101
,
205901
(
2008
).
20.
S.
Iikubo
,
K.
Kodama
,
K.
Takenaka
,
H.
Takagi
, and
S.
Shamoto
,
Phys. Rev. B
77
,
020409(R)
(
2008
).
21.
Y.
Sun
,
C.
Wang
,
Y. C.
Wen
,
L. H.
Chu
,
M.
Nie
, and
F. S.
Liu
,
J. Am. Ceram. Soc.
93
,
650
(
2010
).
22.
Y.
Sun
,
C.
Wang
,
Y. C.
Wen
,
L. H.
Chu
,
H.
Pan
, and
M.
Niez
,
J. Am. Ceram. Soc.
93
,
2178
(
2010
).
23.
Z. H.
Sun
and
X. Y.
Song
,
J. Mater Sci. Technol.
30
,
903
(
2014
).
24.
L.
Ding
,
C.
Wang
,
Y.
Sun
,
C. V.
Colin
, and
L. H.
Chu
,
J. Appl. Phys.
117
,
213915
(
2015
).
25.
J. C.
Lin
,
P.
Tong
,
D. P.
Cui
,
C.
Yang
,
J.
Yang
,
S.
Lin
,
B. S.
Wang
,
W.
Tong
,
L.
Zhang
,
Y. M.
Zou
, and
Y. P.
Sun
,
Sci. Rep.
5
,
7933
(
2015
).
26.
D.
Kasugai
,
A.
Ozawa
,
T.
Inagaki
, and
K.
Takenaka
,
J. Appl. Phys.
111
,
07E314
(
2012
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4936239 for X-ray diffractions of Ga1−xMnxN0.8Mn3 at room temperature, temperature dependent X-ray diffractions for x = 0.25, high-energy X-ray scattering data at room temperature for x = 0.3 and Cu0.5Sn0.5NMn3, fitting to G(r)s using I4/mcm model, P-type and N-type M(H) loops for x = 0.25 at 255K, and M(H)s for Ag1−xNMn3+x (x = 0.5) at various temperatures.
28.
J.
Tan
,
R. J.
Huang
,
W.
Li
,
Y. M.
Han
, and
L. F.
Li
,
J. Alloys Compd.
593
,
103
(
2014
).
29.
K.
Takenaka
and
T.
Inagaki
,
Mater. Trans.
47
,
471
(
2006
).
30.
K.
Takenaka
,
T.
Inagaki
, and
H.
Takagi
,
Appl. Phys. Lett.
95
,
132508
(
2009
).
31.
D.
Fruchart
,
D.
Givord
,
P.
Convert
,
P.
Lheritier
, and
J. P.
Senateur
,
J. Phys. F: Met. Phys.
9
,
2431
(
1979
).
32.
J. C.
Lin
,
P.
Tong
,
D. P.
Cui
,
C.
Yang
,
S.
Lin
,
W. J.
Lu
,
B. S.
Wang
,
B. C.
Zhao
, and
Y. P.
Sun
,
Phys. Status Solidi B
252
,
582
(
2015
).
33.
J.
Nogués
and
I. K.
Schuller
,
J. Magn. Magn. Mater.
192
,
203
(
1999
).
34.
B. M.
Wang
,
Y.
Liu
,
P.
Ren
,
B.
Xia
,
K. B.
Ruan
,
J. B.
Yi
,
J.
Ding
,
X. G.
Li
, and
L.
Wang
,
Phys. Rev. Lett.
106
,
077203
(
2011
).
35.
D.
Tahara
,
Y.
Motome
, and
M.
Imada
,
J. Phys. Soc. Jpn.
76
,
013708
(
2007
).

Supplementary Material

You do not currently have access to this content.