Semi-crystalline polymers have been shown to have greatly increased thermal conductivity compared to amorphous bulk polymers due to effective heat conduction along the covalent bonds of the backbone. However, the mechanisms governing the intrinsic thermal conductivity of polymers remain largely unexplored as thermal transport has been studied in relatively few polymers. Here, we use molecular dynamics simulations to study heat transport in polynorbornene, a polymer that can be synthesized in semi-crystalline form using solution processing. We find that even perfectly crystalline polynorbornene has an exceptionally low thermal conductivity near the amorphous limit due to extremely strong anharmonic scattering. Our calculations show that this scattering is sufficiently strong to prevent the formation of propagating phonons, with heat being instead carried by non-propagating, delocalized vibrational modes known as diffusons. Our results demonstrate a mechanism for achieving intrinsically low thermal conductivity even in crystalline polymers that may be useful for organic thermoelectrics.

1.
T.
Zhang
,
X.
Wu
, and
T.
Luo
, “
Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties
,”
J. Phys. Chem. C
118
,
21148
(
2014
).
2.
X.
Wang
,
V.
Ho
,
R. A.
Segalman
, and
D. G.
Cahill
, “
Thermal conductivity of high-modulus polymer fibers
,”
Macromolecules
46
(
12
),
4937
4943
(
2013
).
3.
J.
Liu
and
R.
Yang
, “
Length-dependent thermal conductivity of single extended polymer chains
,”
Phys. Rev. B
86
(
10
),
104307
(
2012
).
4.
T.
Zhang
and
T.
Luo
, “
Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers
,”
J. Appl. Phys.
112
(
9
),
094304
(
2012
).
5.
A.
Henry
and
G.
Chen
, “
High thermal conductivity of single polyethylene chains using molecular dynamics simulations
,”
Phys. Rev. Lett.
101
(
23
),
235502
(
2008
).
6.
J. J.
Freeman
,
G. J.
Morgan
, and
C. A.
Cullen
, “
Thermal conductivity of a single polymer chain
,”
Phys. Rev. B
35
(
14
),
7627
7635
(
1987
).
7.
S.
Shen
,
A.
Henry
,
J.
Tong
,
R.
Zheng
, and
G.
Chen
, “
Polyethylene nanofibres with very high thermal conductivities
,”
Nat. Nanotechnol.
5
(
4
),
251
255
(
2010
).
8.
C. L.
Choy
,
Y. W.
Wong
,
G. W.
Yang
, and
T.
Kanamoto
, “
Elastic modulus and thermal conductivity of ultradrawn polyethylene
,”
J. Polym. Sci. B: Polym. Phys.
37
(
23
),
3359
3367
(
1999
).
9.
D. B.
Mergenthaler
,
M.
Pietralla
,
S.
Roy
, and
H. G.
Kilian
, “
Thermal conductivity in ultraoriented polyethylene
,”
Macromolecules
25
(
13
),
3500
3502
(
1992
).
10.
L.
Piraux
,
M.
Kinany-Alaoui
,
J. P.
Issi
,
D.
Begin
, and
D.
Billaud
, “
Thermal conductivity of an oriented polyacetylene film
,”
Solid State Commun.
70
(
4
),
427
429
(
1989
).
11.
T.
Mugishima
,
Y.
Kogure
,
Y.
Hiki
,
K.
Kawasaki
, and
H.
Nakamura
, “
Phonon conduction in polyethylene
,”
J. Phys. Soc. Jpn.
57
(
6
),
2069
2079
(
1988
).
12.
T.
Luo
,
K.
Esfarjani
,
J.
Shiomi
,
A.
Henry
, and
G.
Chen
, “
Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane
,”
J. Appl. Phys.
109
(
7
),
074321
(
2011
).
13.
M. D.
Losego
,
L.
Moh
,
K. A.
Arpin
,
D. G.
Cahill
, and
P. V.
Braun
, “
Interfacial thermal conductance in spun-cast polymer films and polymer brushes
,”
Appl. Phys. Lett.
97
(
1
),
011908
(
2010
).
14.
S.
Edmondson
,
V. L.
Osborne
, and
W. T. S.
Huck
, “
Polymer brushes via surface-initiated polymerizations
,”
Chem. Soc. Rev.
33
(
1
),
14
(
2004
).
15.
P. B.
Allen
and
J. L.
Feldman
, “
Thermal conductivity of disordered harmonic solids
,”
Phys. Rev. B
48
(
17
),
12581
12588
(
1993
).
16.
P. B.
Allen
,
J. L.
Feldman
,
J.
Fabian
, and
F.
Wooten
, “
Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si
,”
Philos. Mag. Part B
79
(
11–12
),
1715
1731
(
1999
).
17.
K.
Sakurai
,
T.
Kashiwagi
, and
T.
Takahashi
, “
Crystal structure of polynorbornene
,”
J. Appl. Polym. Sci.
47
(
5
),
937
940
(
1993
).
18.
H.
Sun
, “
Ab initio calculations and force field development for computer simulation of polysilanes
,”
Macromolecules
28
(
3
),
701
712
(
1995
).
19.
J. E.
Mark
,
Physical Properties of Polymers Handbook
(
Springer Science & Business Media
,
2007
), ISBN: 978-0-387-69002-5.
20.
F. A.
Haselwander
,
W.
Heitz
,
S. A.
Krgel
, and
J. H.
Wendorff
, “
Polynorbornene: Synthesis, properties and simulations
,”
Macromol. Chem. Phys.
197
(
10
),
3435
3453
(
1996
).
21.
J. A.
Thomas
,
J. E.
Turney
,
R. M.
Iutzi
,
C. H.
Amon
, and
A. J. H.
McGaughey
, “
Predicting phonon dispersion relations and lifetimes from the spectral energy density
,”
Phys. Rev. B
81
(
8
),
081411
(
2010
).
22.
J. A.
Thomas
,
J. E.
Turney
,
R. M.
Iutzi
,
C. H.
Amon
, and
A. J. H.
McGaughey
, “
Erratum: Predicting phonon dispersion relations and lifetimes from the spectral energy density [Phys. Rev. B 81, 081411(R) (2010)]
,”
Phys. Rev. B
91
(
23
),
239905
(
2015
).
23.
T.
Feng
,
B.
Qiu
, and
X.
Ruan
, “
Anharmonicity and necessity of phonon eigenvectors in the phonon normal mode analysis
,”
J. Appl. Phys.
117
(
19
),
195102
(
2015
).
24.
D. A.
Braden
,
S. F.
Parker
,
J.
Tomkinson
, and
B. S.
Hudson
, “
Inelastic neutron scattering spectra of the longitudinal acoustic modes of the normal alkanes from pentane to pentacosane
,”
J. Chem. Phys.
111
(
1
),
429
437
(
1999
).
25.
J.
Tomkinson
,
S. F.
Parker
,
D. A.
Braden
, and
B. S.
Hudson
, “
Inelastic neutron scattering spectra of the transverse acoustic modes of the normal alkanes
,”
Phys. Chem. Chem. Phys.
4
(
5
),
716
721
(
2002
).
26.
G. D.
Barrera
,
S. F.
Parker
,
A. J.
Ramirez-Cuesta
, and
P. C. H.
Mitchell
, “
The vibrational spectrum and ultimate modulus of polyethylene
,”
Macromolecules
39
(
7
),
2683
2690
(
2006
).
27.
A. F.
Ioffe
and
A. R.
Regel
, “
Non-crystalline, amorphous, and liquid electronic semiconductors
,” in
Progress in Semiconductors
, Vol.
4
, edited by
A. F.
Gibson
(
J. Wiley
,
1960
), pp.
237
291
.
28.
X.
Chen
,
A.
Weathers
,
J.
Carrete
,
S.
Mukhopadhyay
,
O.
Delaire
,
D. A.
Stewart
,
N.
Mingo
,
S. N.
Girard
,
J.
Ma
,
D. L.
Abernathy
,
J.
Yan
,
R.
Sheshka
,
D. P.
Sellan
,
F.
Meng
,
S.
Jin
,
J.
Zhou
, and
L.
Shi
, “
Twisting phonons in complex crystals with quasi-one-dimensional substructures
,”
Nat. Commun.
6
,
6723
(
2015
).
29.
D. G.
Cahill
,
H. E.
Fischer
,
S. K.
Watson
,
R. O.
Pohl
, and
G. A.
Slack
, “
Thermal properties of boron and borides
,”
Phys. Rev. B
40
(
5
),
3254
3260
(
1989
).
You do not currently have access to this content.