Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

1.
R.
Fürstner
,
W.
Barthlott
,
C.
Neinhuis
, and
P.
Walzel
,
Langmuir
21
,
956
(
2005
).
2.
B.
Bhushan
,
K.
Koch
, and
Y. C.
Jung
,
Appl. Phys. Lett.
93
,
093101
(
2008
).
3.
S.
Liu
,
X.
Liu
,
S. S.
Latthe
,
L.
Gao
,
S.
An
,
S. S.
Yoon
,
B.
Liu
, and
R.
Xing
,
Appl. Surf. Sci.
351
,
897
(
2015
).
4.
L.
Cao
,
A. K.
Jones
,
V. K.
Sikka
,
J.
Wu
, and
D.
Gao
,
Langmuir
25
,
12444
(
2009
).
5.
Y.
Wang
,
J.
Xue
,
Q.
Wang
,
Q.
Chen
, and
J.
Ding
,
ACS Appl. Mater. Interfaces
5
,
3370
(
2013
).
6.
N.
Wang
,
D.
Xiong
,
Y.
Deng
,
Y.
Shi
, and
K.
Wang
,
ACS Appl. Mater. Interfaces
7
,
6260
(
2015
).
7.
R. J.
Daniello
,
N. E.
Waterhouse
, and
J. P.
Rothstein
,
Phys. Fluids
21
,
085103
(
2009
).
8.
Y.
Wang
,
X.
Liu
,
H.
Zhang
, and
Z.
Zhou
,
RSC Adv.
5
,
18909
(
2015
).
9.
S. J.
Won
and
C.
Jun-Hyeong
,
J. Micromech. Microeng.
17
,
N11
(
2007
).
10.
A.
Dupuis
,
J.
Léopoldès
,
D. G.
Bucknall
, and
J. M.
Yeomans
,
Appl. Phys. Lett.
87
,
024103
(
2005
).
11.
Y.
Fouillet
,
D.
Jary
,
C.
Chabrol
,
P.
Claustre
, and
C.
Peponnet
,
Microfluid. Nanofluid.
4
,
159
(
2008
).
12.
R.
Prakash
and
K. V. I. S.
Kaler
,
Lab Chip
9
,
2836
(
2009
).
13.
M. G.
Pollack
,
R. B.
Fair
, and
A. D.
Shenderov
,
Appl. Phys. Lett.
77
,
1725
(
2000
).
14.
J. L.
Poulos
,
T.-J.
Jeon
,
R.
Damoiseaux
,
E. J.
Gillespie
,
K. A.
Bradley
, and
J. J.
Schmidt
,
Biosens. Bioelectron.
24
,
1806
(
2009
).
15.
M. T.
Guo
,
A.
Rotem
,
J. A.
Heyman
, and
D. A.
Weitz
,
Lab Chip
12
,
2146
(
2012
).
16.
X.
Yu
,
G.
Cheng
,
M.-D.
Zhou
, and
S.-Y.
Zheng
,
Langmuir
31
,
3982
(
2015
).
17.
B.
Ilic
and
H. G.
Craighead
,
Biomed. Microdevices
2
,
317
(
2000
).
18.
C.-S.
Lee
,
S.-H.
Lee
,
S.-S.
Park
,
Y.-K.
Kim
, and
B.-G.
Kim
,
Biosens. Bioelectron.
18
,
437
(
2003
).
19.
Q.
He
,
C.
Ma
,
X.
Hu
, and
H.
Chen
,
Anal. Chem.
85
,
1327
(
2013
).
20.
J.
Songok
,
M.
Tuominen
,
H.
Teisala
,
J.
Haapanen
,
J.
Mäkelä
,
J.
Kuusipalo
, and
M.
Toivakka
,
ACS Appl. Mater. Interfaces
6
,
20060
(
2014
).
21.
A. W.
Martinez
,
S. T.
Phillips
,
B. J.
Wiley
,
M.
Gupta
, and
G. M.
Whitesides
,
Lab Chip
8
,
2146
(
2008
).
22.
K.
Abe
,
K.
Suzuki
, and
D.
Citterio
,
Anal. Chem.
80
,
6928
(
2008
).
23.
L.
Wu
,
Z.
Dong
,
M.
Kuang
,
Y.
Li
,
F.
Li
,
L.
Jiang
, and
Y.
Song
,
Adv. Funct. Mater.
25
,
2237
(
2015
).
24.
E.
Rodriguez
,
F.
Giacomelli
, and
A.
Vazquez
,
J. Compos, Mater.
38
,
259
(
2004
).
You do not currently have access to this content.