Interference lithography has proven to be a useful technique for generating periodic sub-diffraction limited nanostructures. Interference lithography can be implemented by exposing a photoresist polymer to laser light using a two-beam arrangement or more simply a one beam configuration based on a Lloyd's Mirror Interferometer. For typical photoresist layers, an anti-reflection coating must be deposited on the substrate to prevent adverse reflections from cancelling the holographic pattern of the interfering beams. For silicon substrates, such coatings are typically multilayered and complex in composition. By thinning the photoresist layer to a thickness well below the quarter wavelength of the exposing beam, we demonstrate that interference gratings can be generated without an anti-reflection coating on the substrate. We used ammonium dichromate doped polyvinyl alcohol as the positive photoresist because it provides excellent pinhole free layers down to thicknesses of 40 nm, and can be cross-linked by a low-cost single mode 457 nm laser, and can be etched in water. Gratings with a period of 320 nm and depth of 4 nm were realized, as well as a variety of morphologies depending on the photoresist thickness. This simplified interference lithography technique promises to be useful for generating periodic nanostructures with high fidelity and minimal substrate treatments.

1.
M. C.
Lemme
,
C.
Moormann
,
H.
Lerch
,
M.
Möller
,
B.
Vratzov
, and
H.
Kurz
, “
Triple-gate metal–oxide–semiconductor field effect transistors fabricated with interference lithography
,”
Nanotechnology
15
,
S208
S210
(
2004
).
2.
S. K.
Selvaraja
,
P.
Jaenen
,
W.
Bogaerts
,
D.
Van Thourhout
,
P.
Dumon
, and
R.
Baets
, “
Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography
,”
J. Lightwave Technol.
27
,
4076
4083
(
2009
).
3.
W.
Bogaerts
,
D.
Taillaert
,
B.
Luyssaert
,
P.
Dumon
,
J.
Van Campenhout
,
P.
Bienstman
,
D.
Van Thourhout
,
R.
Baets
,
V.
Wiaux
,
S.
Beckx
 et al., “
Basic structures for photonic integrated circuits in Silicon-on-insulator
,”
Opt. Express
12
,
1583
1591
(
2004
).
4.
W.
Bogaerts
,
V.
Wiaux
,
D.
Taillaert
,
S.
Beckx
,
B.
Luyssaert
,
P.
Bienstman
, and
R.
Baets
, “
Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography
,”
IEEE J. Sel. Top. Quantum Electron.
8
,
928
934
(
2002
).
5.
G. M.
Burrow
,
M. C. R.
Leibovici
, and
T. K.
Gaylord
, “
Pattern-integrated interference lithography: Single-exposure fabrication of photonic-crystal structures
,”
Appl. Opt.
51
,
4028
(
2012
).
6.
H.
van Wolferen
and
L.
Abelmann
, “Laser interference lithography,” in
Lithography: Principles, Processes and Materials
(
Nova Science Publishers, Inc.
,
2011
), pp.
133
148
.
7.
I.
Divliansky
,
T. S.
Mayer
,
K. S.
Holliday
, and
V. H.
Crespi
, “
Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography
,”
Appl. Phys. Lett.
82
,
1667
1669
(
2003
).
8.
L.
Wu
,
Y.
Zhong
,
C. T.
Chan
,
K. S.
Wong
, and
G. P.
Wang
, “
Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography
,”
Appl. Phys. Lett.
86
,
241102
(
2005
).
9.
X.
Wang
,
J. F.
Xu
,
H. M.
Su
,
Z. H.
Zeng
,
Y. L.
Chen
,
H. Z.
Wang
,
Y. K.
Pang
, and
W. Y.
Tam
, “
Three-dimensional photonic crystals fabricated by visible light holographic lithography
,”
Appl. Phys. Lett.
82
,
2212
2214
(
2003
).
10.
M.
Campbell
,
D. N.
Sharp
,
M. T.
Harrison
,
R. G.
Denning
, and
A. J.
Turberfield
, “
Fabrication of photonic crystals for the visible spectrum by holographic lithography
,”
Nature
404
,
53
56
(
2000
).
11.
C.
Lu
and
R. H.
Lipson
, “
Interference lithography: A powerful tool for fabricating periodic structures
,”
Laser Photonics Rev.
4
,
568
580
(
2010
).
12.
Q.
Xie
,
M. H.
Hong
,
H. L.
Tan
,
G. X.
Chen
,
L. P.
Shi
, and
T. C.
hong
, “
Fabrication of nanostructures with laser interference lithography
,”
J. Alloys Compd.
449
,
261
264
(
2008
).
13.
C. S.
Lim
,
M. H.
Hong
,
Y.
Lin
,
Q.
Xie
,
B. S.
Luk'yanchuk
,
A.
Senthil Kumar
, and
M.
Rahman
, “
Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning
,”
Appl. Phys. Lett.
89
,
191125
(
2006
).
14.
R. F.
Pease
, “
Maskless lithography
,”
Microelectron. Eng.
78–79
,
381
392
(
2005
).
15.
A.
Labeyrie
and
J.
Flamand
, “
Spectrographic performance of holographically made diffraction gratings
,”
Opt. Commun.
1
,
5
8
(
1969
).
16.
D.
Rudolph
and
G.
Schmahl
, “
High precision gratings produced with laserlight and photoresist layers
,”
Optik (Stuttg).
30
,
475
487
(
1970
).
17.
V.
Berger
,
O.
Gauthier-Lafaye
, and
E.
Costard
, “
Photonic band gaps and holography
,”
J. Appl. Phys.
82
,
60
(
1997
).
18.
M. A.
Haast
,
I.
Heskamp
,
L.
Abelmann
,
J.
Lodder
, and
T. J.
Popma
, “
Magnetic characterization of large area arrays of single and multi domain CoNi/Pt multilayer dots
,”
J. Magn. Magn. Mater.
193
,
511
514
(
1999
).
19.
W. K.
Choi
,
T. H.
Liew
,
M. K.
Dawood
,
H. I.
Smith
,
C. V.
Thompson
, and
M. H.
Hong
, “
Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching
,”
Nano Lett.
8
,
3799
3802
(
2008
).
20.
B.
Päivänranta
,
A.
Langner
,
E.
Kirk
,
C.
David
, and
Y.
Ekinci
, “
Sub-10 nm patterning using EUV interference lithography
,”
Nanotechnology
22
,
375302
(
2011
).
21.
J. H.
Moon
,
S.
Yang
, and
J.
Ford
, “
Departmental papers (MSE) fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography fabricating three-dimensional polymeric photonic structures
,”
Polym. Adv. Technol.
17
,
83
93
(
2006
).
22.
M.
Miyake
,
Y.-C.
Chen
,
P. V.
Braun
, and
P.
Wiltzius
, “
Fabrication of three-dimensional photonic crystals using multibeam interference lithography and electrodeposition
,”
Adv. Mater.
21
,
3012
3015
(
2009
).
23.
H. H.
Solak
,
C.
David
,
J.
Gobrecht
,
L.
Wang
, and
F.
Cerrina
, “
Four-wave EUV interference lithography
,”
Microelectron. Eng.
61–62
,
77
82
(
2002
).
24.
N. D.
Lai
,
W. P.
Liang
,
J. H.
Lin
,
C. C.
Hsu
, and
C. H.
Lin
, “
Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique
,”
Opt. Express
13
,
9605
9611
(
2005
).
25.
F.
Quiñónez
,
J. W.
Menezes
,
L.
Cescato
,
V. F.
Rodriguez-Esquerre
,
H.
Hernandez-Figueroa
, and
R. D.
Mansano
, “
Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography
,”
Opt. Express
14
,
4873
4879
(
2006
).
26.
J.
De Boor
,
N.
Geyer
,
U.
Gösele
, and
V.
Schmidt
, “
Three-beam interference lithography: Upgrading a Lloyd's interferometer for single-exposure hexagonal patterning
,”
Opt. Lett.
34
,
1783
1785
(
2009
).
27.
M.
Barikani
,
E.
Simova
, and
M.
Kavehrad
, “
Dichromated polyvinyl alcohol as a real-time hologram recording material: Some observations and discussions
,”
Appl. Opt.
34
,
2172
2179
(
1995
).
28.
P.
Spinelli
,
M. A.
Verschuuren
, and
A.
Polman
, “
Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators
,”
Nat. Commun.
3
,
692
(
2012
).
29.
O. S.
Heavens
, “
Thin-film optical filters
,”
Opt. Acta Int. J. Opt.
33
,
1336
(
1986
).
30.
D.
Virganavičius
,
L.
Šimatonis
,
A.
Jurkevičiūtė
,
T.
Tamulevičius
, and
S.
Tamulevičius
, “
Formation of sub-wavelength pitch regular structures employing a motorized multiple exposure Lloyd's mirror holographic lithography setup
,”
Proc. SPIE
9170
,
91701I
(
2014
).
31.
R.
Ji
, “
Templated fabrication of periodic nanostructures based on laser interference lithography
,” Ph.D. dissertation,
Martin-Luther-Universität Halle-Wittenberg
(
2008
).
32.
T. G.
Stange
,
R.
Mathew
,
D. F.
Evans
, and
W. A.
Hendrickson
, “
Scanning tunneling microscopy and atomic force microscopy characterization of polystyrene spin-coated onto silicon surfaces
,”
Langmuir
8
,
920
926
(
1992
).
33.
D. B.
Hall
,
P.
Underhill
, and
J. M.
Torkelson
, “
Spin coating of thin and ultrathin polymer films
,”
Polym. Eng. Sci.
38
,
2039
2045
(
1998
).
34.
S.
Berezin
,
B. S.
Kalanoor
,
H.
Taha
,
Y.
Garini
, and
Y. R.
Tischler
, “
Multiprobe NSOM fluorescence
,”
Nanophotonics
3
,
117
124
(
2014
).
35.
H.
Aviv
and
Y. R.
Tischler
, “
Synthesis and characterization of a J-aggregating TDBC derivative in solution and in Langmuir–Blodgett films
,”
J. Lumin.
158
,
376
383
(
2015
).
36.
G.
Manivannan
,
R.
Changkakoti
,
R. A.
Lessard
,
G.
Mailhot
, and
M.
Bolte
, “
Primary photoprocesses of chromium(VI) in real-time holographic recording material: Dichromated poly(vinyl alcohol)
,”
J. Phys. Chem.
97
,
7228
7233
(
1993
).
37.
J. V.
Kelly
,
M. R.
Gleeson
,
C. E.
Close
,
F. T.
O'Neill
,
J. T.
Sheridan
,
S.
Gallego
, and
C.
Neipp
, “
Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model
,”
Opt. Express
13
(
18
),
6990
7004
(
2005
).
38.
L.
Xue
,
J.
Zhang
, and
Y.
Han
, “
Phase separation induced ordered patterns in thin polymer blend films
,”
Prog. Polym. Sci.
37
,
564
594
(
2012
).
39.
S.
Bai
,
W.
Zhou
,
Y.
Lin
,
Y.
Zhao
,
T.
Chen
,
A.
Hu
, and
W. W.
Duley
, “
Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy
,”
J. Nanopart. Res.
16
,
2470
(
2014
).
40.
Z.
Pang
and
X.
Zhang
, “
Controlling microscopic and spectroscopic properties of metallic photonic crystals written by interference ablation
,”
Opt. Commun.
285
,
4583
4587
(
2012
).
You do not currently have access to this content.