Based on the unique design of the surface morphology, we investigated the effects of gravity and capillary pressure on Critical heat flux (CHF). The micro-structured surfaces for pool boiling tests were comprised with both the rectangular cavity and microchannel structures. The microcavity structures could intrinsically block the liquid flow by capillary pressure effect, and the capillary flow into the boiling surface was one-dimensionally induced only through the microchannel region. Thus, we could clearly establish the relationship between the CHF and capillary wicking flow. The driving potentials for the liquid inflow can be classified into the hydrostatic head by gravitational force, and the capillary pressure induced by the interactions of vapor bubbles, liquid film, and surface solid structures. Through the analysis of the experimental data and visualization of vapor bubble behaviors, we present that the liquid supplement to maintain the nucleate boiling regime in pool boiling condition is governed by the gravitational pressure head and capillary pressure effect.

1.
D.
Cooke
and
S. G.
Kandlikar
,
Int. J. Heat Mass Transfer
55
,
1004
(
2012
).
2.
Z.
Yao
,
Y. W.
Lu
, and
S. G.
Kandlikar
,
J. Nanotechnol. Eng. Med.
3
(
3
),
031002
(
2013
).
3.
K. H.
Chu
,
Y. S.
Joung
,
R.
Enright
,
C. R.
Buie
, and
E. N.
Wang
,
Appl. Phys. Lett.
102
,
151602
(
2013
).
4.
S. S.
Kutateladze
,
Kotloturbostroenie
3
,
152
(
1948
).
5.
N.
Zuber
, AEC Report No. AECU-4439 (
1959
).
6.
S. G.
Liter
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
44
,
4287
(
2001
).
7.
Y.
Haramura
and
Y.
Katto
,
Int. J. Heat Mass Transfer
26
,
389
(
1983
).
8.
R. F.
Gaertner
and
J. W.
Westwater
,
Chem. Eng. Prog., Symp. Ser.
56
,
39
(
1960
).
9.
S. P.
Liaw
and
V. K.
Dhir
, in
Proceedings of the 8th International Heat Transfer Conference
(
1986
), Vol.
4
, p.
2031
.
10.
J. M.
Ramilison
,
P.
Sadasvian
, and
J. H.
Lienhard
,
ASME J. Heat Transfer
114
,
287
(
1992
).
11.
Y.
Takata
,
S.
Hidaka
,
J. M.
Cao
,
T.
Nakamura
,
H.
Yamamoto
,
M.
Masuda
, and
M.
Ito
,
Energy
30
,
209
(
2005
).
12.
V. S.
Nikolayev
and
D. A.
Beysens
,
Europhys. Lett.
47
,
345
(
1999
).
13.
V. S.
Nikolayev
,
D.
Chatain
,
Y.
Garrabos
, and
D. A.
Beysens
,
Phys. Rev. Lett.
97
,
184503
(
2006
).
14.
S. G.
Kandlikar
,
J. Heat Transfer
123
,
1071
(
2001
).
15.
K. H.
Chu
,
R.
Enright
, and
E. N.
Wang
,
Appl. Phys. Lett.
100
,
241603
(
2012
).
16.
S. D.
Park
,
S. W.
Lee
,
S.
Kang
,
I. C.
Bang
,
J. H.
Kim
,
H. S.
Shin
,
D. W.
Lee
, and
D. W.
Lee
,
Appl. Phys. Lett.
97
,
023103
(
2010
).
17.
H. S.
Ahn
,
J. M.
Kim
,
C.
Park
,
J. W.
Jang
,
J. S.
Lee
,
H.
Kim
,
M.
Kaviany
, and
M. H.
Kim
,
Sci. Rep.
3
,
1960
(
2013
).
18.
H. D.
Kim
and
M. H.
Kim
,
Appl. Phys. Lett.
91
,
014104
(
2007
).
19.
M. M.
Rahman
,
E.
Olceroglu
, and
M.
McCarthy
,
Langmuir
30
,
11225
(
2014
).
20.
B. S.
Kim
,
H.
Lee
,
S.
Shin
,
G.
Choi
, and
H. H.
Cho
,
Appl. Phys. Lett.
105
,
191601
(
2014
).
21.
S. D.
Park
and
I. C.
Bang
,
Int. J. Heat Mass Transfer
70
,
844
(
2014
).
22.
A.
Zou
and
S. C.
Maroo
,
Appl. Phys. Lett.
103
,
221602
(
2013
).
23.
B. V.
Deryagin
and
A. M.
Zorin
, in
Proceedings of the 2nd International Congress on Surface Activity
(
London
,
1957
), Vol.
2
, p.
145
.
24.
H.
Hu
and
Y.
Sun
,
Appl. Phys. Lett.
103
,
263110
(
2013
).
25.
D. I.
Yu
,
H. J.
Kwak
,
S. W.
Doh
,
H. S.
Ahn
,
H. S.
Park
,
M.
Kiyofumi
, and
M. H.
Kim
,
Langmuir
31
(
6
),
1950
(
2015
).
26.
D.
Quere
,
Europhys. Lett.
39
(
5
),
533
(
1997
).
27.
H. S.
Ahn
,
G.
Park
,
K.
Kim
, and
M. H.
Kim
,
Langmuir
28
,
2614
(
2012
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.4926971 for test samples preparation and pool boiling experiments, visualization images of vapor bubble behaviors, and numerical calculation domain and boundary conditions.
29.
M. J.
Fuerstman
,
A.
Lai
,
M. E.
Thurlow
,
S. S.
Shevkoplyas
,
H. A.
Stone
, and
G. M.
Whitesides
,
Lab Chip
7
,
1479
(
2007
).

Supplementary Material

You do not currently have access to this content.