We propose a technique for increasing the bandwidth of resonant low-frequency (<100 Hz) piezoelectric energy harvesters based on the modification of the clamped boundary condition of cantilevers, termed here as preloaded freeplay boundary condition. The effects of the preloaded freeplay boundary condition are quantified in terms of the fundamental frequency, frequency response, and power output for two beam configurations, namely, classical cantilevered bimorph piezoelectric energy harvester and zigzag unimorph piezoelectric energy harvester. A comparative analysis was performed between both the harvesters to empirically establish the advantages of the preloaded freeplay boundary condition. Using this approach, we demonstrate that the coupled degree-of-freedom dynamics results in an approximate 4–7 times increase in half-power bandwidth over the fixed boundary condition case.

1.
P.
Muralt
, “
Ferroelectric thin films for micro-sensors and actuators: A review
,”
J. Micromech. Microeng.
10
,
136
146
(
2000
).
2.
W.
Zhou
,
W. H.
Liao
, and
W. J.
Li
, “
Analysis design of a self-powered piezoelectric microaccelerometer
,”
Proc. SPIE
5763
,
233
240
(
2005
).
3.
A.
Karami
and
D. J.
Inman
, “
Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
,”
Appl. Phys. Lett.
100
,
042901
(
2012
).
4.
A.
Abdelkefi
and
M.
Ghommem
, “
Piezoelectric energy harvesting from morphing wing motions for micro air vehicles
,”
Theor. Appl. Mech. Lett.
3
,
052001
(
2013
).
5.
S.
Roundy
and
P. K.
Wright
, “
A piezoelectric vibration-based generator for wireless electronics
,”
Smart Mater. Struct.
13
,
1131
(
2004
).
6.
D. J.
Inman
and
B. L.
Grisso
, “
Towards autonomous sensing
,”
Proc. SPIE
6174
,
61740T
(
2006
).
7.
K. A.
Cook-Chennault
,
N.
Thambi
, and
A. M.
Sastry
, “
Powering MEMS portable devices—A review of nonregenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems
,”
Smart Mater. Struct.
17
,
043001
(
2008
).
8.
S.
Priya
, “
Advances in energy harvesting using low profile piezoelectric transducers
,”
J. Electroceram.
19
,
165
182
(
2007
).
9.
N. N. H.
Ching
,
H. Y.
Wong
,
W. J.
Li
,
P. H. W.
Leong
, and
Z.
Wen
, “
A laser micromachined multi-modal resonating power transducer for wireless sensing systems sensors and actuators
,”
Sens. Actuators, A
97–98
,
685
690
(
2002
).
10.
T.
Sterken
,
P.
Fiorini
,
K.
Baert
,
R.
Puers
, and
G.
Borghs
, “
An electret-based electrostatic μ-generator
,” in
12th International Conference on Solid State Sensors, Actuators and Microsystems TRANDSUCERS '03
(
2003
), pp.
1291
1294
.
11.
H.
Sodano
,
G.
Park
, and
D. J.
Inman
, “
A review of power harvesting from vibration using piezoelectric materials
,”
Shock Vib. Dig.
36
,
197
205
(
2004
).
12.
S. R.
Anton
and
H. A.
Sodano
, “
A review of power harvesting using piezoelectric materials (2003–2006)
,”
Smart Mater. Struct.
16
,
1
21
(
2007
).
13.
A.
Abdelkefi
, “
Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations
,” Ph.D. dissertation (
Virginia Polytechnic Institute and State University
, Blacksburg, VA,
2012
).
14.
A.
Marin
,
S.
Bressers
, and
S.
Priya
, “
Multiple cell configuration electromagnetic vibration energy harvester
,”
J. Appl. Phys.
44
,
295501
(
2011
).
15.
S.
Ben Ayed
,
A.
Abdelkefi
,
F.
Najar
, and
M. R.
Hajj
, “
Design and performance of variable-shaped piezoelectric energy harvesters
,”
J. Intell. Mater. Syst. Struct.
25
,
174
186
(
2014
).
16.
R.
Masana
and
M. F.
Daqaq
, “
Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters
,”
J. Vib. Acoust.
133
,
011007
(
2011
).
17.
V. R.
Challa
,
M. G.
Prasad
,
Y.
Shi
, and
F. T.
Fisher
, “
A vibration energy harvesting device with bidirectional resonance frequency tunability
,”
Smart Mater. Struct.
75
,
1
10
(
2008
).
18.
B. P.
Mann
and
N. D.
Sims
, “
Energy harvesting from the nonlinear oscillations of magnetic levitation
,”
J. Sound Vib.
319
,
515
530
(
2009
).
19.
S. M.
Shahruz
, “
Limits of performance of mechanical band-pass filters used in energy scavenging
,”
J. Sound Vib.
293
,
449
461
(
2006
).
20.
I.
Sari
,
T.
Balkan
, and
H.
Kulah
, “
An electromagnetic micro power generator for wideband environmental vibrations
,”
Sens. Actuators, A
145–146
,
405
413
(
2008
).
21.
L.
Tang
,
Y.
Yang
, and
C. K.
Soh
, “
Toward broadband vibration-based energy harvesting
,”
J. Intell. Mater. Syst. Struct.
21
,
1867
1897
(
2010
).
22.
J.
Twiefel
and
H.
Westermann
, “
Survey on broadband techniques for vibration energy harvesting
,”
J. Intell. Mater. Syst. Struct.
24
,
1291
1302
(
2013
).
23.
A.
Abdelkefi
,
R.
Vasconcellos
,
F. D.
Marques
, and
M. R.
Hajj
, “
Modeling and identification of freeplay nonlinearity
,”
J. Sound Vib.
331
(
8
),
1898
1907
(
2012
).
24.
N.
Sharpes
,
A.
Abdelkefi
, and
S.
Priya
, “
Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters
,”
Energy Harvesting Syst.
1
(
3–4
),
209
216
(
2014
).
25.
D. J.
Apo
,
M.
Sanghadasa
, and
S.
Priya
, “
Vibration modeling of arc-based cantilevers for energy harvesting applications
,”
Energy Harvesting Syst.
1
(
1–2
),
57
68
(
2014
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4926911 for details about experimental setup, test specimen fabrication, and deflection analysis.

Supplementary Material

You do not currently have access to this content.