The dopant (P and B) diffusion path in n- and p-types polycrystalline-Si gates of trench-type three-dimensional (3D) metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated using atom probe tomography, based on the annealing time dependence of the dopant distribution at 900 °C. Remarkable differences were observed between P and B diffusion behavior. In the initial stage of diffusion, P atoms diffuse into deeper regions from the implanted region along grain boundaries in the n-type polycrystalline-Si gate. With longer annealing times, segregation of P on the grain boundaries was observed; however, few P atoms were observed within the large grains or on the gate/gate oxide interface distant from grain boundaries. These results indicate that P atoms diffuse along grain boundaries much faster than through the bulk or along the gate/gate oxide interface. On the other hand, in the p-type polycrystalline-Si gate, segregation of B was observed only at the initial stage of diffusion. After further annealing, the B atoms became uniformly distributed, and no clear segregation of B was observed. Therefore, B atoms diffuse not only along the grain boundary but also through the bulk. Furthermore, B atoms diffused deeper than P atoms along the grain boundaries under the same annealing conditions. This information on the diffusion behavior of P and B is essential for optimizing annealing conditions in order to control the P and B distributions in the polycrystalline-Si gates of trench-type 3D MOSFETs.

1.
J.
Kedzierski
,
M.
Ieong
,
E.
Nowak
,
T. S.
Kanarsky
,
Y.
Zhang
,
R.
Roy
,
D.
Boyd
,
D.
Fried
, and
H.-S.
Philip Wong
,
IEEE Trans. Electron Devices
50
,
952
(
2003
).
2.
D.
Ponton
,
P.
Palestri
,
D.
Esseni
,
L.
Selmi
,
M.
Tiebout
,
B.
Parvais
,
D.
Siprak
, and
G.
Knoblinger
,
IEEE Trans. Circuits Syst., I. Reg. Papers
56
,
920
(
2009
).
3.
C.
Mazure
and
B.-Y.
Nguyen
,
ECS Trans.
49
,
41
(
2012
).
4.
S.
Qin
,
Z.
Wang
,
Y.
Jeff Hu
, and
A.
McTeer
,
IEEE Trans. Electron Devices
60
,
2256
(
2013
).
5.
J. J.
Liou
,
R.
Shireen
,
A.
Ortiz-Conde
,
F. J.
Garcia Sanchez
,
A.
Cerdeira
,
X.
Gao
,
X.
Zou
, and
C. S.
Ho
,
Microelectron Reliab.
42
,
343
(
2002
).
6.
R.
Rios
,
N. D.
Arora
, and
C.-L.
Huang
,
IEEE Electron Device Lett.
15
,
129
(
1994
).
7.
J. A.
Croon
,
G.
Storms
,
S.
Winkelmeier
,
I.
Pollentier
,
M.
Ercken
,
S.
Decoutere
,
Q.
Sansen
, and
H. E.
Maes
,
Tech. Dig. - Int. Electron Devices Meet.
2002
,
307
.
8.
M.
Cao
,
P. V.
Voorde
,
M.
Cox
, and
W.
Greene
,
IEEE Electron Device Lett.
19
,
291
(
1998
).
9.
A. T.
Fiory
,
K. K.
Bourdelle
, and
P. K.
Roy
,
Appl. Phys. Lett.
78
,
1071
(
2001
).
10.
M. A.
Quevedo-Lopez
,
M.
El-Bouanani
,
M. J.
Kim
,
B. E.
Gnade
,
R. M.
Wallace
,
M. R.
Visokay
,
A.
Li-Fatou
,
M. J.
Bevan
, and
L.
Colombo
,
Appl. Phys. Lett.
81
,
1609
(
2002
).
11.
H.
Takamizawa
,
Y.
Shimizu
,
K.
Inoue
,
T.
Toyama
,
F.
Yano
,
A.
Nishida
,
T.
Mogami
,
N.
Okada
,
M.
Kato
,
H.
Uchida
,
K.
Kitamoto
,
T.
Miyagi
,
J.
Kato
, and
Y.
Nagai
,
Appl. Phys. Lett.
100
,
253504
(
2012
).
12.
K.
Inoue
,
F.
Yano
,
A.
Nishida
,
H.
Takamizawa
,
T.
Tsunomura
,
Y.
Nagai
, and
M.
Hasegawa
,
Ultramicroscopy
109
,
1479
(
2009
).
13.
H.
Takamizawa
,
Y.
Shimizu
,
K.
Inoue
,
T.
Toyama
,
N.
Okada
,
M.
Kato
,
H.
Uchida
,
F.
Yano
,
A.
Nishida
,
T.
Mogami
, and
Y.
Nagai
,
Appl. Phys. Lett.
99
,
133502
(
2011
).
14.
T.
Izumida
,
K.
Okano
,
T.
Kanemura
,
M.
Kondo
,
S.
Inaba
,
S.
Itoh
,
N.
Aoki
, and
Y.
Toyoshima
,
Jpn. J. Appl. Phys., Part 1
50
,
04DC15
(
2011
).
15.
M.
Gilbert
,
W.
Vandervorst
,
S.
Koelling
, and
A. K.
Kambham
,
Ultramicroscopy
111
,
530
(
2011
).
16.
A. K.
Kambham
,
J.
Mody
,
M.
Gilbert
,
S.
Koelling
, and
W.
Vandervorst
,
Ultramicroscopy
111
,
535
(
2011
).
17.
M. K.
Miller
,
K. F.
Russel
, and
G. B.
Thompson
,
Ultramicroscopy
102
,
287
(
2005
).
18.
K.
Thompson
,
D.
Lawrence
,
D. J.
Larson
,
J. D.
Olson
,
T. F.
Kelly
, and
B.
Gorman
,
Ultramicroscopy
107
,
131
(
2007
).
19.
T. F.
Kelly
,
D. J.
Larson
,
K.
Thompson
,
R. L.
Alvis
,
J. H.
Bunton
,
J. D.
Olson
, and
B. P.
Gorman
,
Annu. Rev. Mater. Res.
37
,
681
(
2007
).
20.
T. F.
Kelly
and
D. J.
Larson
,
Annu. Rev. Mater. Res.
42
,
1
31
(
2012
).
21.
F.
Vurpillot
,
B.
Gault
,
B. P.
Geiser
, and
D. J.
Larson
,
Ultramicroscopy
132
,
19
(
2013
).
22.
K.
Inoue
,
F.
Yano
,
A.
Nishida
,
H.
Takamizawa
,
T.
Tsunomura
,
Y.
Nagai
, and
M.
Hasegawa
,
Appl. Phys. Lett.
95
,
043502
(
2009
).
23.
F. A.
Trumbore
,
Bell Syst. Tecn. J.
39
,
205
(
1960
).
24.
S.
Jin
,
K. S.
Jones
,
M. E.
Law
, and
R.
Camillo-Castillo
,
J. Appl. Phys.
111
,
044508
(
2012
).
25.
H.
Bracht
,
H. H.
Silvestri
,
I. D.
Sharp
, and
E. E.
Haller
,
Phys. Rev. B
75
,
035211
(
2007
).
26.
M.
Kohyama
and
R.
Yamamoto
,
Phys. Rev. B
50
,
8502
(
1994
).
27.
T. A.
Arias
and
J. D.
Joannopoulos
,
Phys. Rev. B
49
,
4525
(
1994
).
28.
A. D.
Buonaquisti
,
W.
Carter
, and
P. H.
Holloway
,
Thin Solid Films
100
,
235
(
1983
).
29.
M. R.
Murti
and
K. V.
Reddy
,
Semicond. Sci. Technol.
4
,
622
(
1989
).
30.
W. A.
Rausch
,
R. F.
Lever
, and
R. H.
Kastl
,
J. Appl. Phys.
54
,
4405
(
1983
).
You do not currently have access to this content.