Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd1−XYXNiO3 (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can be changed within the range of 340–360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.

1.
J. A.
Alonso
,
J. L.
Garcia-Munoz
,
M. T.
Fernandez-Diaz
,
M. A. G.
Aranda
,
M. J.
Martinez-Lope
, and
M. T.
Casais
,
Phys. Rev. Lett.
82
,
3871
(
1999
).
2.
I. I.
Mazin
,
D. I.
Khomskii
,
R.
Lengsdorf
,
J. A.
Alonso
,
W. G.
Marshall
,
R. M.
Ibberson
,
A.
Podlesnyak
,
M. J.
Martínez-Lope
, and
M. M.
Abd-Elmeguid
,
Phys. Rev. Lett.
98
,
176406
(
2007
).
3.
M. L.
Medarde
,
J. Phys.: Condens. Matter
9
,
1679
(
1997
).
4.
Z.
Yang
,
C.
Ko
, and
S.
Ramanathan
,
Annu. Rev. Mater. Res.
41
,
337
(
2011
).
5.
D. M.
Newns
,
J. A.
Misewich
,
C. C.
Tsuei
,
A.
Gupta
,
B. A.
Scott
, and
A.
Schrott
,
Appl. Phys. Lett.
73
,
780
(
1998
).
6.
Y.
Zhou
,
X. N.
Chen
,
C. H.
Ko
,
Z.
Yang
,
C.
Mouli
, and
S.
Ramanathan
,
IEEE Electron Device Lett.
34
,
220
(
2013
).
7.
C.
Ko
and
S.
Ramanathan
,
J. Appl. Phys.
104
,
086105
(
2008
).
8.
T.
Driscoll
,
H. T.
Kim
,
B. G.
Chae
,
M.
Di Ventra
, and
D. N.
Basov
,
Appl. Phys. Lett.
95
,
043503
(
2009
).
9.
S. D.
Ha
,
G. H.
Aydogdu
, and
S.
Ramanathan
,
Appl. Phys. Lett.
98
,
012105
(
2011
).
10.
J.
Liu
,
M.
Kargarian
,
M.
Kareev
,
B.
Gray
,
P. J.
Ryan
,
A.
Cruz
,
N.
Tahir
,
Yi-De
Chuang
,
J.
Guo
,
J. M.
Rondinelli
,
J. W.
Freeland
,
G. A.
Fiete
, and
J.
Chakhalian
,
Nat. Commun.
4
,
2714
(
2013
).
11.
M.
Hepting
,
M.
Minola
,
A.
Frano
,
G.
Cristiani
,
G.
Logvenov
,
E.
Schierle
,
M.
Wu
,
M.
Bluschke
,
E.
Weschke
,
H. U.
Habermeier
,
E.
Benckiser
,
M.
Le Tacon
, and
B.
Keimer
,
Phys. Rev. Lett.
113
,
227206
(
2014
).
12.
F. Y.
Bruno
,
K. Z.
Rushchanskii
,
S.
Valencia
,
Y.
Dumont
,
C.
Carrétéro
,
E.
Jacquet
,
R.
Abrudan
,
S.
Blügel
,
M.
Ležaić
,
M.
Bibes
, and
A.
Barthélémy
,
Phys. Rev. B
88
,
195108
(
2013
).
13.
A. Y.
Ramos
,
C.
Piamonteze
,
H. C. N.
Tolentino
,
N. M.
Souza-Neto
,
O.
Bunau
,
Y.
Joly
,
S.
Grenier
,
J.-P.
Itié
,
N. E.
Massa
,
J. A.
Alonso
, and
M. J.
Martinez-Lope
,
Phys. Rev. B
85
,
045102
(
2012
).
14.
H.
Park
,
A. J.
Millis
, and
C. A.
Marianetti
,
Phys. Rev. B
89
,
245133
(
2014
).
15.
V. B.
Barbeta
,
R. F.
Jardim
,
M. S.
Torikachvili
,
M. T.
Escote
,
F.
Cordero
,
F. M.
Pontes
, and
F.
Trequattrini
,
J. Appl. Phys.
109
,
07E115
(
2011
).
16.
F.
Capon
,
P.
Laffez
,
J. F.
Bardeau
,
P.
Simon
,
P.
Lacorre
, and
M.
Zaghrioui
,
Appl. Phys. Lett.
81
,
619
(
2002
).
17.
J. F.
Hamet
,
A.
Ambrosini
, and
R.
Retoux
,
J. Appl. Phys.
93
,
5136
(
2003
).
18.
A. S.
Disa
,
D. P.
Kumah
,
J. H.
Ngai
,
E. D.
Specht
,
D. A.
Arena
,
F. J.
Walker
, and
C. H.
Ahn
,
APL Mater.
1
,
032110
(
2013
).
19.
P. H.
Xiang
,
S.
Asanuma
,
H.
Yamada
,
I. H.
Inoue
,
H.
Akoh
, and
A.
Sawa
,
Appl. Phys. Lett.
97
,
032114
(
2010
).
20.
G.
Catalan
,
R. M.
Bowman
, and
J. M.
Gregg
,
Phys. Rev. B
62
,
7892
(
2000
).
21.
J. A.
Alonso
,
M. J.
Martínez-Lope
,
M. T.
Casais
,
J. L.
García-Muñoz
,
M. T.
Fernández-Díaz
, and
M. A. G.
Aranda
,
Phys. Rev. B
64
,
094102
(
2001
).
22.
H.
Hu
,
M.
Liu
,
Z. F.
Wang
,
J.
Zhu
,
D.
Wu
,
H.
Ding
,
Z.
Liu
, and
F.
Liu
,
Phys. Rev. Lett
109
,
055501
(
2012
).
23.
D.
Kaur
,
J.
Jesudasan
, and
P.
Raychaudhuri
,
Solid State Commun.
136
,
369
(
2005
).
24.
P.
Laffez
,
M.
Zaghrioui
,
I.
Monot
,
T.
Brousse
, and
P.
Lacorre
,
Thin Solid Films
354
,
50
(
1999
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4926917 for detail description of hystersis, charge disproportionation, doping effect on transition sharpness and EXAFS data analysis.
26.
B.
Torriss
,
M.
Chaker
, and
J.
Margot
,
Appl. Phys. Lett.
101
,
091908
(
2012
).
27.
Z. M.
Qi
,
M.
Liu
,
Y. H.
Chen
,
G. B.
Zhang
,
M.
Xu
,
C. S.
Shi
,
W. P.
Zhang
,
M.
Yin
, and
Y. N.
Xie
,
J. Phys. Chem. C
111
,
1945
(
2007
).
28.
Z. M.
Qi
,
C. S.
Shi
,
W. W.
Zhang
,
W. P.
Zhang
, and
T. D.
Hu
,
Appl. Phys. Lett.
81
,
2857
(
2002
).
29.
M.
Acosta-Alejandro
,
J.
Mustre de León
,
M.
Medarde
,
Ph.
Lacorre
,
K.
Konder
, and
P. A.
Montano
,
Phys. Rev. B
77
,
085107
(
2008
).
30.
M.
Medarde
,
A.
Fontaine
,
J. L.
García-Muñoz
,
J.
Rodriguez-Carvajal
,
M.
Desantis
,
M.
Sacchi
,
G.
Rossi
, and
P.
Lacorre
,
Phys. Rev. B
46
,
14975
(
1992
).
31.
H.
Modrow
,
S.
Bucher
,
J. J.
Rehr
, and
A. L.
Ankudinov
,
Phys. Rev. B
67
,
035123
(
2003
).
32.
M.
Medarde
,
C.
Dallera
,
M.
Grioni
,
B.
Delley
,
F.
Vernay
,
J.
Mesot
,
M.
Sikora
,
J. A.
Alonso
, and
M. J.
Martinez-Lope
,
Phys. Rev. B
80
,
245105
(
2009
).

Supplementary Material

You do not currently have access to this content.