Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ∼105 s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due to coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.

1.
Y.
Uemoto
,
M.
Hikita
,
H.
Ueno
,
H.
Matsuo
,
H.
Ishida
,
M.
Yanagihara
,
T.
Ueda
,
T.
Tanaka
, and
D.
Ueda
,
IEEE Trans. Electron Devices
54
,
3393
(
2007
).
2.
M.
Jurkovič
,
D.
Gregušová
,
V.
Palankovski
,
Š.
Haščík
,
M.
Blaho
,
K.
Čičo
,
K.
Fröhlich
,
J.-F.
Carlin
,
N.
Grandjean
, and
J.
Kuzmík
,
IEEE Electron Device Lett.
34
,
432
(
2013
).
3.
D.
Morgan
,
M.
Sultana
,
H.
Fatima
,
S.
Sugiyama
,
Q.
Fareed
,
V.
Adivarahan
,
M.
Lachab
, and
A.
Khan
,
Appl. Phys. Express
4
,
114101
(
2011
).
4.
J.
Würfl
,
O.
Hilt
,
E.
Bahat-Treidel
,
R.
Zhytnytska
,
P.
Kotara
,
F.
Brunner
,
O.
Krueger
, and
M.
Weyers
,
Tech. Dig. Int. Electron Devices Meet.
2013
,
6.1.1
6.1.4
.
5.
C. Y.
Chang
,
C. F.
Lo
,
F.
Ren
,
S. J.
Pearton
,
I. I.
Kravchenko
,
A. M.
Dabiran
,
B.
Cui
, and
P. P.
Chow
,
Phys. Status Solidi C
7
,
2415
(
2010
).
6.
N.
Ikeda
,
K.
Kato
,
K.
Kondoh
,
H.
Kambayashi
,
J.
Li
, and
S.
Yoshida
,
Phys. Status Solidi A
204
,
2028
(
2007
).
7.
M. A.
Briere
, “
Progress in silicon based 600 V power GaN
,”
Power Semicond.
4
,
30
(
2013
).
8.
See www.hiposwitch.eu for HipoSwitch, EU 7th FP project.
9.
O.
Hilt
,
E.
Bahat-Treidel
,
A.
Knauer
,
F.
Brunner
,
R.
Zhytnytska
, and
J.
Würfl
,
MRS Bull.
40
,
418
(
2015
).
10.
W.
Götz
,
N. M.
Johnson
,
J.
Walker
,
D. P.
Bour
,
H.
Amano
, and
I.
Akasaki
,
Appl. Phys. Lett.
67
,
2666
(
1995
).
11.
I.-H.
Tan
,
G. L.
Snider
,
L. D.
Chang
, and
E. L.
Hu
,
J. Appl. Phys.
68
,
4071
(
1990
).
12.
B.
De Salvo
,
G.
Ghibaudo
,
G.
Pananakakis
,
B.
Guillaumot
, and
G.
Reimbold
,
Solid-State Electron.
44
,
895
(
2000
).
13.
M.
Ťapajna
,
K.
Čičo
,
J.
Kuzmík
,
D.
Pogany
,
G.
Pozzovivo
,
G.
Strasser
,
J.-F.
Carlin
,
N.
Grandjean
, and
K.
Fröhlich
,
Semicond. Sci. Technol.
24
,
035008
(
2009
).
14.
M.
Montes Bajo
,
C.
Hodges
,
M. J.
Uren
, and
M.
Kuball
,
Appl. Phys. Lett.
101
,
033508
(
2012
).
15.
M.
Meneghini
,
A.
Stocco
,
M.
Bertin
,
D.
Marcon
,
A.
Chini
,
G.
Meneghesso
, and
E.
Zanoni
,
Appl. Phys. Lett.
100
,
033505
(
2012
).
16.
M.
Meneghini
,
I.
Rossetto
,
F.
Hurkx
,
J.
Šonský
,
J. A.
Croon
,
G.
Meneghesso
, and
E.
Zanoni
,
IEEE Trans. Electron Devices
62
,
2549
(
2015
).
17.
D.
Marcon
,
T.
Kauerauf
,
F.
Medjdoub
,
J.
Das
,
M.
Van Hove
,
P.
Srivastava
,
K.
Cheng
,
M.
Leys
,
R.
Mertens
,
S.
Decoutere
,
G.
Meneghesso
,
E.
Zanoni
, and
G.
Borghs
,
Tech. Dig. Int. Electron Device Meet.
2010
,
20.3.1
20.3.4
.
18.
H.
Sun
,
M.
Montes Bajo
,
M. J.
Uren
, and
M.
Kuball
,
Appl. Phys. Lett.
106
,
043505
(
2015
).
19.
C.
Ostermaier
,
G.
Pozzovivo
,
B.
Basnar
,
W.
Schrenk
,
M.
Schmid
,
L.
Tóth
,
B.
Pécz
,
J.-F.
Carlin
,
M.
Gonschorek
,
N.
Grandjean
,
G.
Strasser
,
D.
Pogany
, and
J.
Kuzmik
,
Appl. Phys. Lett.
96
,
263515
(
2010
).
You do not currently have access to this content.