First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated.

1.
O.
Lopez-Sanchez
,
E. A.
Llado
,
V.
Koman
,
A.
Fontcuberta i Morral
,
A.
Radenovic
, and
A.
Kis
,
ACS Nano
8
(
3
),
3042
(
2014
).
2.
M.
Bernardi
,
M.
Palummo
, and
J. C.
Grossman
,
Nano Lett.
13
(
8
),
3664
(
2013
);
[PubMed]
Ji.
Feng
,
X.
Qian
,
C.-W.
Huang
, and
Ju.
Li
,
Nat. Photonics
6
(
12
),
866
(
2012
).
3.
M.
Buscema
,
M.
Barkelid
,
V.
Zwiller
,
H. S. J.
van der Zant
,
G. A.
Steele
, and
A.
Castellanos-Gomez
,
Nano Lett.
13
(
2
),
358
(
2013
);
[PubMed]
S.
Huang
,
Xi.
Ling
,
L.
Liang
,
J.
Kong
,
H.
Terrones
,
V.
Meunier
, and
M. S.
Dresselhaus
,
Nano Lett.
14
(
10
),
5500
(
2014
);
[PubMed]
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
(
4
),
1271
(
2010
);
[PubMed]
K. F.
Mak
,
K.
He
,
C.
Lee
,
G. H.
Lee
,
J.
Hone
,
T. F.
Heinz
, and
J.
Shan
,
Nat. Mater.
12
(
3
),
207
(
2013
);
[PubMed]
X.
Hong
,
J.
Kim
,
Su.-F.
Shi
,
Yu.
Zhang
,
C.
Jin
,
Y.
Sun
,
S.
Tongay
,
J.
Wu
,
Y.
Zhang
, and
F.
Wang
,
Nat. Nanotechnol.
9
(
9
),
682
(
2014
);
[PubMed]
F. H. L.
Koppens
,
T.
Mueller
,
Ph.
Avouris
,
A. C.
Ferrari
,
M. S.
Vitiello
, and
M.
Polini
,
Nat. Nanotechnol
9
(
10
),
780
(
2014
).
[PubMed]
4.
H. J.
Conley
,
B.
Wang
,
J. I.
Ziegler
,
R. F.
Haglund
,
S. T.
Pantelides
, and
K. I.
Bolotin
,
Nano Lett.
13
(
8
),
3626
(
2013
).
5.
A. P.
Nayak
,
T.
Pandey
,
D.
Voiry
,
J.
Liu
,
S. T.
Moran
,
A.
Sharma
,
C.
Tan
,
C.-H.
Chen
,
L.-J.
Li
,
M.
Chhowalla
,
J.-Fu.
Lin
,
A. K.
Singh
, and
D.
Akinwande
,
Nano Lett.
15
(
1
),
346
(
2015
).
6.
K. F.
Mak
,
K.
He
,
J.
Shan
, and
T. F.
Heinz
,
Nat. Nanotechnol.
7
(
8
),
494
(
2012
);
[PubMed]
A.
Chernikov
,
T. C.
Berkelbach
,
H. M.
Hill
,
A.
Rigosi
,
Y.
Li
,
O. B.
Aslan
,
D. R.
Reichman
,
M. S.
Hybertsen
, and
T. F.
Heinz
,
Phys. Rev. Lett.
113
(
7
),
076802
(
2014
);
[PubMed]
Y.
Li
,
J.
Ludwig
,
T.
Low
,
A.
Chernikov
,
Xu.
Cui
,
G.
Arefe
,
Y. D.
Kim
,
A. M.
van der Zande
,
A.
Rigosi
,
H. M.
Hill
,
S. H.
Kim
,
J.
Hone
,
Z.
Li
,
D.
Smirnov
, and
T. F.
Heinz
,
Phys. Rev. Lett.
113
(
26
),
266804
(
2014
);
[PubMed]
D.
MacNeill
,
C.
Heikes
,
K.
Fai Mak
,
Z.
Anderson
,
A.
Kormányos
,
V.
Zólyomi
,
J.
Park
, and
D. C.
Ralph
,
Phys. Rev. Lett.
114
(
3
),
037401
(
2015
).
[PubMed]
7.
K.
He
,
N.
Kumar
,
L.
Zhao
,
Z.
Wang
,
K. F.
Mak
,
H.
Zhao
, and
J.
Shan
,
Phys. Rev. Lett.
113
(
2
),
026803
(
2014
).
8.
M.
Wu
,
X.
Qian
, and
Ju.
Li
,
Nano Lett.
14
(
9
),
5350
(
2014
);
[PubMed]
M.-L.
Tsai
,
S.-H.
Su
,
J.-K.
Chang
,
D.-S.
Tsai
,
C.-H.
Chen
,
C.-I.
Wu
,
L.-J.
Li
,
L.-J.
Chen
, and
Jr.-H.
He
,
ACS Nano
8
(
8
),
8317
(
2014
);
[PubMed]
Y. J.
Zhang
,
J. T.
Ye
,
Y.
Yomogida
,
T.
Takenobu
, and
Y.
Iwasa
,
Nano Lett.
13
(
7
),
3023
(
2013
).
[PubMed]
9.
C.-Ho.
Lee
,
G.-H.
Lee
,
A. M.
van der Zande
,
W.
Chen
,
Y.
Li
,
M.
Han
,
Xu.
Cui
,
G.
Arefe
,
C.
Nuckolls
,
T. F.
Heinz
,
J.
Guo
,
J.
Hone
, and
P.
Kim
,
Nat. Nanotechnol.
9
(
9
),
676
(
2014
).
10.
S.
Tongay
,
J.
Suh
,
C.
Ataca
,
W.
Fan
,
A.
Luce
,
J. S.
Kang
,
J.
Liu
,
C.
Ko
,
R.
Raghunathanan
,
J.
Zhou
,
F.
Ogletree
,
J.
Li
,
J. C.
Grossman
, and
J.
Wu
,
Sci. Rep.
3
,
2657
(
2013
);
[PubMed]
K.
Roy
,
M.
Padmanabhan
,
S.
Goswami
,
T. P.
Sai
,
G.
Ramalingam
,
S.
Raghavan
, and
A.
Ghosh
,
Nat. Nanotechnol.
8
(
11
),
826
(
2013
);
[PubMed]
R. S.
Sundaram
,
M.
Engel
,
A.
Lombardo
,
R.
Krupke
,
A. C.
Ferrari
,
Ph.
Avouris
, and
M.
Steiner
,
Nano Lett.
13
(
4
),
1416
(
2013
).
[PubMed]
11.
M.-Y.
Tsai
,
A.
Tarasov
,
Z. R.
Hesabi
,
H.
Taghinejad
,
P. M.
Campbell
,
C. A.
Joiner
,
A.
Adibi
, and
E. M.
Vogel
,
ACS Appl. Mater. Interfaces
7
(
23
),
12850
(
2015
);
[PubMed]
T.
Wu
and
H.
Zhang
,
Angew. Chem.
127
(
15
),
4508
(
2015
);
E. J.
Reed
,
Nat. Nanotechnol.
10
(
2
),
106
(
2015
);
[PubMed]
H.
Zhu
,
Y.
Wang
,
J.
Xiao
,
M.
Liu
,
S.
Xiong
,
Zi. J.
Wong
,
Z.
Ye
,
Yu.
Ye
,
X.
Yin
, and
X.
Zhang
,
Nat Nanotechnol.
10
(
2
),
151
(
2015
);
[PubMed]
W.
Wu
,
L.
Wang
,
Y.
Li
,
F.
Zhang
,
L.
Lin
,
S.
Niu
,
D.
Chenet
,
X.
Zhang
,
Y.
Hao
,
T. F.
Heinz
,
J.
Hone
, and
Z. L.
Wang
,
Nature
514
(
7523
),
470
(
2014
).
[PubMed]
12.
A.
Ramasubramaniam
,
Phys. Rev. B
86
(
11
),
115409
(
2012
);
Di.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
,
Phys. Rev. Lett.
108
(
19
),
196802
(
2012
);
[PubMed]
K. F.
Mak
,
K. L.
McGill
,
J.
Park
, and
P. L.
McEuen
,
Science
344
(
6191
),
1489
(
2014
).
[PubMed]
13.
J. A.
Wilson
and
A. D.
Yoffe
,
Adv. Phys.
18
(
73
),
193
(
1969
);
R. H.
Friend
and
A. D.
Yoffe
,
Adv. Phys.
36
(
1
),
1
(
1987
).
14.
G.
Eda
,
T.
Fujita
,
H.
Yamaguchi
,
D.
Voiry
,
M.
Chen
, and
M.
Chhowalla
,
ACS Nano
6
(
8
),
7311
(
2012
).
15.
D.
Voiry
,
A.
Goswami
,
R.
Kappera
,
C.
de Carvalho Castro e Silva
,
D.
Kaplan
,
T.
Fujita
,
M.
Chen
,
T.
Asefa
, and
M.
Chhowalla
,
Nat. Chem.
7
(
1
),
45
(
2015
).
16.
R.
Kappera
,
D.
Voiry
,
S. E.
Yalcin
,
B.
Branch
,
G.
Gupta
,
A. D.
Mohite
, and
M.
Chhowalla
,
Nat. Mater.
13
(
12
),
1128
(
2014
).
17.
A. P.
Nayak
,
S.
Bhattacharyya
,
J.
Zhu
,
J.
Liu
,
X.
Wu
,
T.
Pandey
,
C.
Jin
,
A. K.
Singh
,
D.
Akinwande
, and
J.-Fu.
Lin
,
Nat. Commun.
5
,
3731
(
2014
).
18.
H.
Wang
,
Z.
Lu
,
S.
Xu
,
D.
Kong
,
J. J.
Cha
,
G.
Zheng
,
Po.-C.
Hsu
,
K.
Yan
,
D.
Bradshaw
,
F. B.
Prinz
, and
Yi.
Cui
,
Proc. Natl. Acad. Sci.
110
(
49
),
19701
(
2013
);
M. A.
Lukowski
,
A. S.
Daniel
,
F.
Meng
,
A.
Forticaux
,
L.
Li
, and
S.
Jin
,
J. Am. Chem. Soc.
135
(
28
),
10274
(
2013
);
[PubMed]
Y.
Guo
,
D.
Sun
,
B.
Ouyang
,
A.
Raja
,
J.
Song
,
T. F.
Heinz
, and
L. E.
Brus
,
Nano Lett.
15
(
8
),
5081
(
2015
).
[PubMed]
19.
L.
Wang
,
Z.
Xu
,
W.
Wang
, and
X.
Bai
,
J. Am. Chem. Soc.
136
(
18
),
6693
(
2014
).
20.
M.
Kan
,
J. Y.
Wang
,
X. W.
Li
,
S. H.
Zhang
,
Y. W.
Li
,
Y.
Kawazoe
,
Q.
Sun
, and
P.
Jena
,
J. Phys. Chem. C
118
(
3
),
1515
(
2014
);
A. N.
Enyashin
,
L.
Yadgarov
,
L.
Houben
,
I.
Popov
,
M.
Weidenbach
,
R.
Tenne
,
M.
Bar-Sadan
, and
G.
Seifert
,
J. Phys. Chem. C
115
(
50
),
24586
(
2011
).
21.
K.-A. N.
Duerloo
,
Y.
Li
, and
E. J.
Reed
,
Nat. Commun.
5
,
4214
(
2014
).
22.
D. K.
Efetov
and
P.
Kim
,
Phys. Rev. Lett.
105
(
25
),
256805
(
2010
);
[PubMed]
B.
Chakraborty
,
A.
Bera
,
D. V. S.
Muthu
,
S.
Bhowmick
,
U. V.
Waghmare
, and
A. K.
Sood
,
Phys. Rev. B
85
(
16
),
161403
(
2012
);
G. P.
Siddons
,
D.
Merchin
,
Ju. H.
Back
,
J. K.
Jeong
, and
M.
Shim
,
Nano Lett.
4
(
5
),
927
(
2004
);
L.
Ming-Wei
,
L.
Lezhang
,
L.
Qing
,
T.
Xuebin
,
S. D.
Kulwinder
,
Z.
Peng
,
M. N.
Vaman
,
C. M.
Ming-Cheng
, and
Z.
Zhixian
,
J. Phys. D: Appl. Phys.
45
(
34
),
345102
(
2012
).
23.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
(
3B
),
B864
(
1964
);
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
(
4A
),
A1133
(
1965
);
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
(
1994
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
);
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
[PubMed]
24.
E.
Benavente
,
M. A.
Santa Ana
,
F.
Mendizábal
, and
G.
González
,
Coord. Chem. Rev.
224
(
1–2
),
87
(
2002
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4934836 for additional information on 1T-MX2 and on the construction of the 2D diagrams in Fig. 4.
26.

Strictly speaking, k is the product of the actual stiffness and volume of the primitive cell.

27.

Note: Similar findings are obtained for other TMD systems as well.

28.

Note: It is worth noting that under large strains the 2H phase becomes metallic.

29.
A.
Castellanos-Gomez
,
R.
Roldán
,
E.
Cappelluti
,
M.
Buscema
,
F.
Guinea
,
H. S. J.
van der Zant
, and
G. A.
Steele
,
Nano Lett.
13
(
11
),
5361
(
2013
).
30.
N.
Lu
,
H.
Guo
,
L.
Li
,
J.
Dai
,
Lu.
Wang
,
W.-N.
Mei
,
X.
Wu
, and
X. C.
Zeng
,
Nanoscale
6
(
5
),
2879
(
2014
).
31.

Notes: Meanwhile, 1T′ and 1T″ phases remain metallic, regardless of the lattice distortion.

32.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
,
ACS Nano
5
(
12
),
9703
(
2011
).
33.
R.
Kappera
,
D.
Voiry
,
S. E.
Yalcin
,
W.
Jen
,
M.
Acerce
,
S.
Torrel
,
B.
Branch
,
S.
Lei
,
W.
Chen
,
S.
Najmaei
,
J.
Lou
,
P. M.
Ajayan
,
G.
Gupta
,
A. D.
Mohite
, and
M.
Chhowalla
,
APL Mater.
2
(
9
),
092516
(
2014
).

Supplementary Material

You do not currently have access to this content.