High-density two-dimensional electron gas (2DEG) can be formed at complex oxide interfaces such as SrTiO3/GdTiO3 and SrTiO3/LaAlO3. The electric field in the vicinity of the interface depends on the dielectric properties of the material as well as on the electron distribution. However, it is known that electric fields can strongly modify the dielectric constant of SrTiO3 as well as other complex oxides. Solving the electrostatic problem thus requires a self-consistent approach in which the dielectric constant varies according to the local magnitude of the field. We have implemented the field dependence of the dielectric constant in a Schrödinger-Poisson solver in order to study its effect on the electron distribution in a 2DEG. Using the SrTiO3/GdTiO3 interface as an example, we demonstrate that including the field dependence results in the 2DEG being confined closer to the interface compared to assuming a single field-independent value for the dielectric constant. Our conclusions also apply to SrTiO3/LaAlO3 as well as other similar interfaces.

1.
P.
Moetakef
,
T. A.
Cain
,
D. G.
Ouellette
,
J. Y.
Zhang
,
D. O.
Klenov
,
A.
Janotti
,
C. G.
Van De Walle
,
S.
Rajan
,
S. J.
Allen
, and
S.
Stemmer
,
Appl. Phys. Lett.
99
,
232116
(
2011
).
2.
A.
Ohtomo
and
H. Y.
Hwang
,
Nature
427
,
423
(
2004
).
3.
J.
Lee
and
A. A.
Demkov
,
Phys. Rev. B
78
,
193104
(
2008
).
4.
A.
Janotti
,
L.
Bjaalie
,
L.
Gordon
, and
C. G.
Van De Walle
,
Phys. Rev. B
86
,
241108
(
2012
).
5.
L.
Bjaalie
,
B.
Himmetoglu
,
L.
Weston
,
A.
Janotti
, and
C. G.
Van De Walle
,
New J. Phys.
16
,
025005
(
2014
).
6.
Y. Z.
Chen
,
N.
Bovet
,
F.
Trier
,
D. V.
Christensen
,
F. M.
Qu
,
N. H.
Andersen
,
T.
Kasama
,
W.
Zhang
,
R.
Giraud
,
J.
Dufouleur
,
T. S.
Jespersen
,
J. R.
Sun
,
A.
Smith
,
J.
Nygård
,
L.
Lu
,
B.
Büchner
,
B. G.
Shen
,
S.
Linderoth
, and
N.
Pryds
,
Nat. Commun.
4
,
1371
(
2013
).
7.
Y.
Hotta
,
T.
Susaki
, and
H. Y.
Hwang
,
Phys. Rev. Lett.
99
,
236805
(
2007
).
8.
H. W.
Jang
,
D. A.
Felker
,
C. W.
Bark
,
Y.
Wang
,
M. K.
Niranjan
,
C. T.
Nelson
,
Y.
Zhang
,
D.
Su
,
C. M.
Folkman
,
S. H.
Baek
,
S.
Lee
,
K.
Janicka
,
Y.
Zhu
,
X. Q.
Pan
,
D. D.
Fong
,
E. Y.
Tsymbal
,
M. S.
Rzchowski
, and
C. B.
Eom
,
Science
331
,
886
(
2011
).
9.
H. Y.
Hwang
,
Y.
Iwasa
,
M.
Kawasaki
,
B.
Keimer
,
N.
Nagaosa
, and
Y.
Tokura
,
Nat. Mater.
11
,
103
(
2012
).
10.
S.
Stemmer
and
S.
James Allen
,
Annu. Rev. Mater. Res.
44
,
151
(
2014
).
11.
Y. Z.
Chen
,
F.
Trier
,
T.
Kasama
,
D. V.
Christensen
,
N.
Bovet
,
Z. I.
Balogh
,
H.
Li
,
K. T. S.
Thydén
,
W.
Zhang
,
S.
Yazdi
,
P.
Norby
,
N.
Pryds
, and
S.
Linderoth
,
Nano Lett.
15
,
1849
(
2015
).
12.
Y. Z.
Chen
,
F.
Trier
,
T.
Wijnands
,
R. J.
Green
,
N.
Gauquelin
,
R.
Egoavil
,
D. V.
Christensen
,
G.
Koster
,
M.
Huijben
,
N.
Bovet
,
S.
Macke
,
F.
He
,
R.
Sutarto
,
N. H.
Andersen
,
J. A.
Sulpizio
,
M.
Honig
,
G. E. D. K.
Prawiroatmodjo
,
T. S.
Jespersen
,
S.
Linderoth
,
S.
Ilani
,
J.
Verbeeck
,
G.
VanTendeloo
,
G.
Rijnders
,
G. A.
Sawatzky
, and
N.
Pryds
,
Nat. Mater.
14
,
801
(
2015
).
13.
S.
Thiel
,
G.
Hammerl
,
A.
Schmehl
,
C. W.
Schneider
, and
J.
Mannhart
,
Science
313
,
1942
(
2006
).
14.
C.
Cen
,
S.
Thiel
,
J.
Mannhart
, and
J.
Levy
,
Science
323
,
1026
(
2009
).
15.
B.
Förg
,
C.
Richter
, and
J.
Mannhart
,
Appl. Phys. Lett.
100
,
053506
(
2012
).
16.
J.
Son
,
S.
Rajan
,
S.
Stemmer
, and
S.
James Allen
,
J. Appl. Phys.
110
,
084503
(
2011
).
17.
H.-M.
Christen
,
J.
Mannhart
,
E. J.
Williams
, and
C.
Gerber
,
Phys. Rev. B
49
,
12095
(
1994
).
18.
J.
Hemberger
,
P.
Lunkenheimer
,
R.
Viana
,
R.
Böhmer
, and
A.
Loidl
,
Phys. Rev. B
52
,
13159
(
1995
).
19.
R. A.
van der Berg
,
P. W. M.
Blom
,
J. F. M.
Cillessen
, and
R. M.
Wolf
,
Appl. Phys. Lett.
66
,
697
(
1995
).
20.
R. A.
Cowley
,
Phys. Rev. A
134
,
A981
(
1964
).
21.
G.
Khalsa
and
A.
MacDonald
,
Phys. Rev. B
86
,
125121
(
2012
).
22.
K. V.
Reich
,
M.
Schecter
, and
B. I.
Shklovskii
,
Phys. Rev. B
91
,
115303
(
2015
).
23.
24.
O.
Copie
,
V.
Garcia
,
C.
Bödefeld
,
C.
Carrétéro
,
M.
Bibes
,
G.
Herranz
,
E.
Jacquet
,
J.-L.
Maurice
,
B.
Vinter
,
S.
Fusil
,
K.
Bouzehouane
,
H.
Jaffrès
, and
A.
Barthélémy
,
Phys. Rev. Lett.
102
,
216804
(
2009
).
25.
D.
Kahng
and
S. H.
Wemple
,
J. Appl. Phys.
36
,
2925
(
1965
).
26.

The band diagram for STO/GTO differs from the one shown in the inset of Fig. 1 by the inclusion of a “lower Hubbard band” in the GTO, lying well below the conduction-band minimum of STO (see Ref. 5). The presence of this band does not affect any of the physics discussed in the present work.

27.
S.
Birner
,
S.
Hackenbuchner
,
M.
Sabathil
,
G.
Zandler
,
J. A.
Majewski
,
T.
Andlauer
,
T.
Zibold
,
R.
Morschl
,
A.
Trellakis
, and
P.
Vogl
,
Acta Phys. Pol. A
110
,
111
(
2006
).
28.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
,
Rev. Mod. Phys.
54
,
437
(
1982
).
29.
E.
Mikheev
,
B.
Himmetoglu
,
A. P.
Kajdos
,
P.
Moetakef
,
T. A.
Cain
,
C. G.
Van de Walle
, and
S.
Stemmer
,
Appl. Phys. Lett.
106
,
062102
(
2015
).
30.
K.
Krishnaswamy
,
C. E.
Dreyer
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
92
,
085420
(
2015
).
You do not currently have access to this content.