The topological surface states in three-dimensional topological insulators are easily tuned by chemical doping, especially by magnetic impurities. We prepared single crystals of CexBi2−xTe3 with various x (=0.04, 0.06, 0.08, 0.10, and 0.12). The obtained crystals were characterized by X-ray diffraction and scanning electron microscopy. The magnetic susceptibility data revealed that the Ce atoms are well substituted for Bi into Bi2Te3. From the Curie-Weiss fits, we observed that the effective magnetic moments μeff are close to 2.54 μB for free Ce ion, and the paramagnetic Curie-Weiss temperatures θp are negatively increased from 2.87 K to −59.3 K with increasing x. The magnetization data clearly showed antiferromagnetic orders around TN = 4.1 K for x ≥ 0.08, where θp suddenly increases, and the electrical resistivity is simply metallic and the magnetoresistance is parabolic. Only for x = 0.06, exotic physical properties arising from the topological states were observed such as non-metallic behavior in the electrical resistivity and linear dependence of the magnetoresistance. Moreover, the carrier concentration of x = 0.06 is one order lower than that of x ≥ 0.08. These observations propose that the antiferromagnetic order is strongly competing with the topological state in CexBi2−xTe3.

1.
H. J.
Zhang
,
C. X.
Liu
,
X. L.
Qi
,
X.
Dai
,
Z.
Fang
, and
S. C.
Zhang
,
Nat. Phys.
5
,
438
(
2009
).
2.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
(
2010
).
3.
X. L.
Qi
and
S. C.
Zhang
,
Rev. Mod. Phys.
83
,
1057
(
2011
).
4.
R. S. K.
Mong
,
A. M.
Essin
, and
J. E.
Moore
,
Phys. Rev. B
81
,
245209
(
2010
).
5.
C.-X.
Liu
, e-print arXiv:1304.6455.
6.
R. A.
Muller
,
N. R.
Lee-Hone
,
L.
Lapointe
,
D. H.
Ryan
,
T.
Pereg-Barnea
,
A. D.
Bianchi
,
Y.
Mozharivskyj
, and
R.
Flacau
,
Phys. Rev. B
90
,
041109
(
2014
).
7.
A.
Kreyssig
,
M. G.
Kim
,
J. W.
Kim
,
D. K.
Pratt
,
S. M.
Sauerbrei
,
S. D.
March
,
G. R.
Tesdall
,
S. L.
Bud'ko
,
P. C.
Canfield
,
R. J.
McQueeney
, and
A. I.
Goldman
,
Phys. Rev. B
84
,
220408
(
2011
).
8.
M.
Hohenadler
,
T. C.
Lang
, and
F. F.
Assaad
,
Phys. Rev. Lett.
106
,
100403
(
2011
).
9.
J.
Kim
,
K.
Lee
,
T.
Takabatake
,
H.
Kim
,
M.
Kim
, and
M. H.
Jung
,
Sci. Rep.
5
,
10309
(
2015
).
10.
S. W.
Kim
,
S.
Vrtnik
,
J.
Dolinšek
, and
M. H.
Jung
,
Appl. Phys. Lett.
106
,
252401
(
2015
).
11.
Y.
Feutelais
,
B.
Legendre
,
N.
Rodier
, and
V.
Agafonov
,
Mater. Res. Bull.
28
,
591
(
1993
).
12.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley
,
Hoboken, NJ
,
2005
).
13.
W.
Kinzel
,
Phys. Rev. B
19
,
4595
(
1979
).
14.
M.
Alba
,
M.
Ocio
, and
J.
Hammann
,
Europhys. Lett.
2
,
45
(
1986
).
15.
E.
Vincent
,
Lect. Notes Phys.
716
,
7
(
2007
).
16.
D. X.
Qu
,
Y. S.
Hor
,
J.
Xiong
,
R. J.
Cava
, and
N. P.
Ong
,
Science
329
,
821
(
2010
).
17.
L. H.
Bao
,
L.
He
,
N.
Meyer
,
X. F.
Kou
,
P.
Zhang
,
Z. G.
Chen
,
A. V.
Fedorov
,
J.
Zou
,
T. M.
Riedemann
,
T. A.
Lograsso
,
K. L.
Wang
,
G.
Tuttle
, and
F. X.
Xiu
,
Sci. Rep.
2
,
726
(
2012
).
18.
D.
Shoenberg
,
Magnetic Oscillations in Metals
(
Cambridge University Press
,
Cambridge, UK
,
1984
).
19.
A. A.
Taskin
and
Y.
Ando
,
Phys. Rev. B
84
,
035301
(
2011
).
20.
P.
Cheng
,
C. L.
Song
,
T.
Zhang
,
Y. Y.
Zhang
,
Y. L.
Wang
,
J. F.
Jia
,
J.
Wang
,
Y. Y.
Wang
,
B. F.
Zhu
,
X.
Chen
,
X. C.
Ma
,
K.
He
,
L. L.
Wang
,
X.
Dai
,
Z.
Fang
,
X. C.
Xie
,
X. L.
Qi
,
C. X.
Liu
,
S. C.
Zhang
, and
Q. K.
Xue
,
Phys. Rev. Lett.
105
,
076801
(
2010
).
21.
C.
Chen
,
Z.
Xie
,
Y.
Feng
,
H.
Yi
,
A.
Liang
,
S.
He
,
D.
Mou
,
J.
He
,
Y.
Peng
,
X.
Liu
,
Y.
Liu
,
L.
Zhao
,
G.
Liu
,
X.
Dong
,
J.
Zhang
,
L.
Yu
,
X.
Wang
,
Q.
Peng
,
Z.
Wang
,
S.
Zhang
,
F.
Yang
,
C.
Chen
,
Z.
Xu
, and
X. J.
Zhou
,
Sci. Rep.
3
,
2411
(
2013
).
22.
A.
Herdt
,
L.
Plucinski
,
G.
Bihlmayer
,
G.
Mussler
,
S.
Doring
,
J.
Krumrain
,
D.
Grutzmacher
,
S.
Blugel
, and
C. M.
Schneider
,
Phys. Rev. B
87
,
035127
(
2013
).
You do not currently have access to this content.