We performed a numerical simulation of the spatial behavior of spin precession in a persistent spin helix (PSH) state at high temperatures (>150 K) in a two-dimensional electron gas of GaAs and InGaAs (001)-semiconductor quantum wells (QWs). To describe the spin dynamics of the PSH state at high temperatures, the effect of a cubic Dresselhaus spin-orbit interaction (SOI) that destroys the PSH state was added to the balanced Rashba and linear Dresselhaus SOI. Furthermore, longitudinal optical and acoustic phonon scattering were taken into account in the momentum scattering calculations. The simulation results indicate that the PSH state in the InGaAs QW persists for over 500 ps because of the small effective mass of the electron, even at room temperature. We also reveal that it is closer to the ideal PSH state when the Rashba strength (α) is controlled to the renormalized linear Dresselhaus SOI strength (β̃) rather than the linear Dresselhaus SOI strength (β).

1.
S.
Datta
and
B.
Das
,
Appl. Phys. Lett.
56
,
665
(
1990
).
2.
D.
Loss
and
D. P.
DiVincenzo
,
Phys. Rev. A
57
,
120
(
1998
).
3.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Nature
427
,
50
(
2004
).
4.
H.
Sanada
,
Y.
Kunihashi
,
H.
Gotoh
,
K.
Onomitsu
,
M.
Kohda
,
J.
Nitta
,
P. V.
Santos
, and
T.
Sogawa
,
Nat. Phys.
9
,
280
(
2013
).
5.
M. I.
D'yakonov
and
V. I.
Perel
,
Sov. Phys. Semicond.
20
,
110
(
1986
).
6.
I. L.
Aleiner
and
V. I.
Fal'ko
,
Phys. Rev. Lett.
87
,
256801
(
2001
).
7.
J. H.
Cremers
,
P. W.
Brouwer
, and
V. I.
Fal'ko
,
Phys. Rev. B
68
,
125329
(
2003
).
8.
E. I.
Rashba
,
Fiz. Tverd. Tela (Leningrad)
2
,
1224
(
1960
).
9.
J.
Nitta
,
T.
Akazaki
, and
H.
Takayanagi
,
Phys. Rev. Lett.
78
,
1335
(
1997
).
10.
G.
Dresselhaus
,
Phys. Rev.
100
,
580
(
1955
).
11.
M. P.
Walser
,
U.
Siegenthaler
,
V.
Lechner
,
D.
Schuh
,
S. D.
Ganichev
,
W.
Wegscheider
, and
G.
Salis
,
Phys. Rev. B
86
,
195309
(
2012
).
12.
M.
Kohda
,
V.
Lechner
,
Y.
Kunihashi
,
T.
Dollinger
,
P.
Olbrich
,
C.
Schönhuber
,
I.
Caspers
,
V. V.
Bel'kov
,
L. E.
Golub
,
D.
Weiss
,
K.
Richter
,
J.
Nitta
, and
S. D.
Ganichev
,
Phys. Rev. B
86
,
081306(R)
(
2012
).
13.
J.
Schliemann
,
J. C.
Egues
, and
D.
Loss
,
Phys. Rev. Lett.
90
,
146801
(
2003
).
14.
B. A.
Bernevig
,
J.
Orestein
, and
S.-C.
Zhang
,
Phys. Rev. Lett.
97
,
236601
(
2006
).
15.
J.
Ishihara
,
M.
Ono
,
Y.
Ohno
, and
H.
Ohno
,
Appl. Phys. Lett.
102
,
212402
(
2013
).
16.
M. P.
Walser
,
C.
Reich
,
W.
Wegscheider
, and
G.
Salis
,
Nat. Phys.
8
,
757
(
2012
).
17.
L.
Yang
,
J. D.
Koralek
,
J.
Orenstein
,
D. R.
Tibbetts
,
J. L.
Reno
, and
M. P.
Lilly
,
Nat. Phys.
8
,
153
(
2011
).
18.
J. P.
Leburton
,
J. Appl. Phys.
56
,
2850
(
1984
).
19.
C. Y.
Huang
,
J.
Law
,
H.
Lu
,
D.
Jena
,
M. J. W.
Rodwell
, and
A. C.
Gossard
,
J. Appl. Phys.
115
,
123711
(
2014
).
20.
See http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/index.html for GaAs materinal parameters (last accessed July 15,
2015
).
21.
S.
Faniel
,
T.
Matsuura
,
S.
Mineshige
,
Y.
Sekine
, and
T.
Koga
,
Phys. Rev. B
83
,
115309
(
2011
).
22.
J. B.
Miller
,
D. M.
Zumbühl
,
C. M.
Marcus
,
Y. B.
Lyanda-Geller
,
D.
Goldhaber-Gordon
,
K.
Campman
, and
A. C.
Gossard
,
Phys. Rev. Lett.
90
,
076807
(
2003
).
You do not currently have access to this content.