A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.

1.
D. D.
Awschalom
and
M. E.
Flatté
,
Nat. Phys.
3
,
153
(
2007
).
2.
T.
Jungwirth
,
J.
Wunderlich
, and
K.
Olejník
,
Nat. Mater.
11
,
382
(
2012
).
3.
Y. A.
Bychkov
and
E. I.
Rashba
,
J. Phys. C: Solid State Phys.
17
,
6039
(
1984
).
4.
G.
Dresselhaus
,
Phys. Rev.
100
,
580
(
1955
).
5.
Y.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Nature
427
,
50
(
2004
).
6.
S. A.
Crooker
and
D. L.
Smith
,
Phys. Rev. Lett.
94
,
236601
(
2005
).
7.
L.
Meier
,
G.
Salis
,
I.
Shorubalko
,
E.
Gini
,
S.
Schön
, and
K.
Ensslin
,
Nat. Phys.
3
,
650
(
2007
).
8.
M.
Studer
,
G.
Salis
,
K.
Ensslin
,
D. C.
Driscoll
, and
A. C.
Gossard
,
Phys. Rev. Lett.
103
,
027201
(
2009
).
9.
M. I.
D'yakonov
and
V. I.
Perel'
, Fiz. Tverd. Tela
13
,
3581
(
1971
) [
Sov. Phys. Solid State
13, 3023 (1972)].
10.
M. I.
D'yakonov
and
V.
Yu. Kachorovskii
,
Fiz. Tekh. Poluprovodn.
20
,
178
(
1986
);
M. I.
D'yakonov
and
V.
Yu. Kachorovskii
[
Sov. Phys. Semicond.
20
,
110
(
1986
)].
11.
J. D.
Koralek
,
C. P.
Weber
,
J.
Orenstein
,
B. A.
Bernevig
,
Shou-Cheng
Zhang
,
S.
Mack
, and
D. D.
Awschalom
,
Nature
458
,
610
(
2009
).
12.
M. P.
Walser
,
C.
Reichl
,
W.
Wegscheider
, and
G.
Salis
,
Nat. Phys.
8
,
757
(
2012
).
13.
J.
Ishihara
,
M.
Ono
,
Y.
Ohno
, and
H.
Ohno
,
Appl. Phys. Lett.
102
,
212402
(
2013
).
14.
P.
Altmann
,
M. P.
Walser
,
C.
Reichl
,
W.
Wegscheider
, and
G.
Salis
,
Phys. Rev. B
90
,
201306(R)
(
2014
).
15.
J.
Ishihara
,
Y.
Ohno
, and
H.
Ohno
,
Jpn. J. Appl. Phys., Part 1
53
,
04EM04
(
2014
).
16.
S. D.
Ganichev
and
L. E.
Golub
,
Phys. Status Solidi B
251
,
1801
(
2014
).
17.
V.
Lechner
,
L. E.
Golub
,
F.
Lomakina
,
V. V.
Bel'kov
,
P.
Olbrich
,
S.
Stachel
,
I.
Caspers
,
M.
Griesbeck
,
M.
Kugler
,
M. J.
Hirmer
,
T.
Korn
,
C.
Schüller
,
D.
Schuh
,
W.
Wegscheider
, and
S. D.
Ganichev
,
Phys. Rev. B
83
,
155313
(
2011
).
18.
M. P.
Walser
,
U.
Siegenthaler
,
V.
Lechner
,
D.
Schuh
,
S. D.
Ganichev
,
W.
Wegscheider
, and
G.
Salis
,
Phys. Rev. B
86
,
195309
(
2012
).
19.
Y. S.
Chen
,
S.
Fält
,
W.
Wegscheider
, and
G.
Salis
,
Phys. Rev. B
90
,
121304(R)
(
2014
).
20.
W. J. H.
Leyland
,
R. T.
Harley
,
M.
Henini
,
A. J.
Shields
,
I.
Farrer
, and
D. A.
Ritchie
,
Phys. Rev. B
76
,
195305
(
2007
).
21.
P. S.
Eldridge
,
J.
Hübner
,
S.
Oertel
,
R. T.
Harley
,
M.
Henini
, and
M.
Oestreich
,
Phys. Rev. B
83
,
041301
(
2011
).
You do not currently have access to this content.