Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

1.
S.
Siebentritt
and
S.
Schorr
,
Prog. Photovoltaics
20
,
512
519
(
2012
).
2.
W.
Wang
,
M. T.
Winkler
,
O.
Gunawan
,
T.
Gokmen
,
T. K.
Todorov
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
4
,
1301465
(
2014
).
3.
G.
Brammertz
,
M.
Buffière
,
S.
Oueslati
,
H.
ElAnzeery
,
K.
Ben Messaoud
,
S.
Sahayaraj
,
C.
Köble
,
M.
Meuris
, and
J.
Poortmans
,
Appl. Phys. Lett.
103
,
163904
(
2013
).
4.
S.
Siebentritt
,
Thin Solid Films
535
,
1
4
(
2013
).
5.
P.
Jackson
,
D.
Hariskos
,
R.
Wuerz
,
O.
Kiowski
,
A.
Bauer.
,
T. M.
Friedlmeier
, and
M.
Powalla
,
Phys. Status Solidi (RRL)
9
,
28
31
(
2015
).
6.
A.
Walsh
,
S.
Chen
,
S.
Wei
, and
X.
Gong
,
Adv. Energy Mater.
2
,
400
409
(
2012
).
7.
T.
Maeda
,
S.
Nakamura
, and
T.
Wada
,
Thin Solid Films
519
,
7513
(
2011
).
8.
I. V.
Dudchak
and
L. V.
Piskach
,
J. Alloys Compd.
351
,
145
150
(
2003
).
9.
I. D.
Olekseyuk
,
I. V.
Dudchack
, and
L. V.
Piskach
,
J. Alloys Compd.
368
,
135
143
(
2004
).
10.
A.
Redinger
and
S.
Siebentritt
,
Appl. Phys. Lett.
97
,
092111
(
2010
).
11.
A.
Redinger
,
D. M.
Berg
,
P. J.
Dale
, and
S.
Siebentritt
,
J. Am. Chem. Soc.
133
,
3320
(
2011
).
12.
J. J.
Scragg
,
P. J.
Dale
,
D.
Colombara
, and
L. M.
Peter
,
ChemPhysChem
13
,
3035
3046
(
2012
).
13.
J. J.
Scragg
,
T.
Ericson
,
T.
Kubart
,
M.
Edoff
, and
C.
Platzer-Bjorkman
,
Chem. Mater.
23
,
4625
4633
(
2011
).
14.
J. T.
Wätjen
,
J.
Engman
,
M.
Edoff
, and
C.
Platzer-Bjorkman
,
Appl. Phys. Lett.
100
,
173510
(
2012
).
15.
C.
Platzer-Björkman
,
J.
Scragg
,
H.
Flammersberger
,
T.
Kubart
, and
M.
Edoff
,
Sol. Energy Mater. Sol. Cells
98
,
110
117
(
2012
).
16.
A.
Redinger
,
K.
Hönes
,
X.
Fontané
,
V.
Izquierdo-Roca
,
E.
Saucedo
,
N.
Valle
,
A.
Pérez-Rodríguez
, and
S.
Siebentritt
,
Appl. Phys. Lett.
98
,
101907
(
2011
).
17.
T.
Schwarz
,
O.
Cojocaru-Mirédin
,
P.
Choi
,
M.
Mousel
,
A.
Redinger
,
S.
Siebentritt
, and
D.
Raabe
,
Appl. Phys. Lett.
102
,
042101
(
2013
).
18.
R. A.
Wibowo
,
W. S.
Kim
,
E. S.
Lee
,
B.
Munir
, and
K. H.
Kim
,
J. Phys. Chem. Solids
68
,
1908
1913
(
2007
).
19.
G.
Suresh Babu
,
Y. B.
Kishore Kumar
,
P.
Uday Bhaskar
, and
S.
Raja Vanjari
,
Sol. Energy Mater. Sol. Cells
94
,
221
226
(
2010
).
20.
A. J.
Cheng
,
M.
Manno
,
A.
Khare
,
C.
Leighton
,
S. A.
Campbell
, and
E. S.
Aydil
,
J. Vac. Sci. Technol., A
29
,
051203
(
2011
).
21.
M.
Mousel
,
A.
Redinger
,
R.
Djemour
,
M.
Arasimowicz
,
N.
Valle
,
P.
Dale
, and
S.
Siebentritt
,
Thin Solid Films
535
,
83
87
(
2013
).
22.
M.
Mousel
,
T.
Schwarz
,
R.
Djemour
,
T. P.
Weiss
,
J.
Sendler
,
J. C.
Malaquias
,
A.
Redinger
,
O.
Cojocaru-Mirédin
,
P.
Choi
, and
S.
Siebentritt
,
Adv. Energy Mater.
4
,
1300543
(
2014
).
23.
T.
Kelly
and
M. K.
Miller
,
Rev. Sci. Instrum.
78
,
031101
(
2007
).
24.
A.
Stein
,
S. W.
Keller
, and
T. E.
Mallouk
,
Science
259
,
1558
1564
(
1993
).
25.
W. E.
Buhro
,
K. M.
Hickman
, and
T. J.
Trentler
,
Adv. Mater.
8
,
685
688
(
1996
).
26.
D. M.
Berg
,
M.
Arasimowicz
,
R.
Djemour
,
L.
Gütay
,
S.
Siebentritt
,
S.
Schorr
,
X.
Fontané
,
V.
Izquierdo-Roca
,
A.
Pérez-Rodriguez
, and
P.
Dale
,
Thin Solid Films
569
,
113
123
(
2014
).
27.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
28.
G.
Kresse
and
J.
Furthmüller
Phys. Rev. B
54
,
11169
(
1996
).
29.
S.
Goedecker
,
J. Chem. Phys.
120
,
9911
(
2004
).
30.
M.
Amsler
and
S.
Goedecker
,
J. Chem. Phys.
133
,
224104
(
2010
).
31.
V. I.
Anisimov
,
J.
Zaanem
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4934847 for the crystallographic information files.
33.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
);
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906(E)
(
2006
).
34.
S.
Botti
,
D.
Kammerlander
, and
M. A. L.
Marques
,
Appl. Phys. Lett.
98
,
241915
(
2011
).
35.
E.
Monroy
,
F.
Omnès
, and
F.
Calle
,
Semicond. Sci. Technol.
18
,
R33
R51
(
2003
).
36.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S.
Wei
,
Appl. Phys. Lett.
94
,
041903
(
2009
).
37.
A.
Schleife
,
F.
Fuchs
,
C.
Rödl
,
J.
Furthmüller
, and
F.
Bechstedt
,
Appl. Phys. Lett.
94
,
012104
(
2009
).
38.
L.
Gütay
,
A.
Redinger
,
R.
Djemour
, and
S.
Siebentritt
,
Appl. Phys. Lett.
100
,
102113
(
2012
).
39.
D. J.
Chakrabarti
and
D. E.
Laughlin
,
Bull. Alloy Phase Diagrams
4
,
254
258
(
1983
).
40.
V. M.
Glazov
,
A. S.
Pashinkin
, and
V. A.
Fedorov
,
Inorg. Mater.
36
,
641
652
(
2000
).
41.
B.
Predel
and
O.
Madelung
, “
Se-Sn (selenium-tin)
,” in
The Landolt-Börnstein Database
(
Springer-Materials
,
1998
).
42.
B.
Predel
and
O.
Madelung
, “
S-Sn (sulfur-tin)
,” in
The Landolt-Börnstein Database
(
Springer-Materials
,
1998
).
43.
R. C.
Sharma
and
Y. A.
Chang
,
J. Phase Equilib.
17
,
155
160
(
1996
);
R. C.
Sharma
and
Y. A.
Chang
,
J. Phase Equilib.
17
,
261–266
(
1996
).
44.
L. V.
Piskach
,
O. V.
Parasyuk
, and
I. D.
Olekseyuk
,
J. Alloys Compd.
279
,
142
(
1998
).
45.
S.
Fiechter
,
M.
Martinez
,
G.
Schmidt
,
W.
Henrion
, and
Y.
Tomm
,
J. Phys. Chem. Solids
64
,
1859
1862
(
2003
).
46.
D. P.
Joseph
,
S.
Ganesan
,
M.
Kovendhan
,
S. A.
Suthanthiraraj
,
P.
Maruthamuthu
, and
C.
Venkateswaran
,
Phys. Status Solidi A
208
,
2215
2219
(
2011
).
47.
J. R.
Craig
and
G.
Kullerud
,
Miner. Deposita
8
,
81
91
(
1973
).
48.
Y.
Oh
,
S.
Bag
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
,
Chem. Mater.
23
,
2447
2456
(
2011
).
49.
G.
Gottstein
,
Materialwissenschaft der Werkstofftechnik—Physikalische Grundlagen
, 4th ed. (
Springer Vieweg
,
Berlin
,
2014
), Chap. 7.
50.
T.
Schwarz
, “
On the nano-scale characterization of kesterite thin-films
,” Ph.D. dissertation (
RWTH Aachen
,
2015
).

Supplementary Material

You do not currently have access to this content.