A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise SΦ1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa2Cu3O7. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for SΦ1/2 between (0.25 and 0.44) μΦ0/Hz1/2 for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

1.
H.
Hilgenkamp
and
J.
Mannhart
,
Rev. Mod. Phys.
74
,
485
(
2002
).
2.
R. R.
Schulz
,
B.
Chesca
,
B.
Goetz
,
C. W.
Schneider
,
A.
Schmehl
,
H.
Bielefeldt
,
H.
Hilgenkamp
,
J.
Mannhart
, and
C. C.
Tsuei
,
Appl. Phys. Lett.
76
,
912
914
(
2000
).
3.
S. A.
Cybart
,
S. M.
Wu
,
S. M.
Anton
,
I.
Siddigi
,
J.
Clarke
, and
R. C.
Dynes
,
Appl. Phys. Lett.
93
,
182502
(
2008
).
4.
J.
Du
,
J. Y.
Lazar
,
S. K. H.
Lam
,
E. E.
Mitchell
, and
C. P.
Foley
,
Supercond. Sci. Technol.
27
,
095005
(
2014
).
5.
E. Y.
Cho
,
M. K.
Ma
,
C.
Huynh
,
K.
Pratt
,
D. N.
Paulson
,
V. N.
Glyantsev
,
R. C.
Dynes
, and
S. A.
Cybart
,
Appl. Phys. Lett.
106
,
252601
(
2015
).
6.
C. H.
Wu
,
Y. T.
Chou
,
W. C.
Kuo
,
J. H.
Chen
,
L. M.
Wang
,
J. C.
Chen
,
K. L.
Chen
,
U. C.
Sou
,
H. C.
Yang
, and
J. T.
Jeng
,
Nanotechnology
19
,
315304
(
2008
).
7.
C. P.
Foley
and
H.
Hilgenkamp
,
Supercond. Sci. Technol.
22
,
064001
(
2009
).
8.
T.
Schwarz
,
J.
Nagel
,
R.
Wolbing
,
M.
Kemmler
,
R.
Kleiner
, and
D.
Koelle
,
ACS Nano
7
,
844
(
2013
).
9.
M. I.
Faley
,
U.
Poppe
,
R. E.
Dunin-Borkowski
,
M.
Schiek
,
F.
Boers
,
H.
Chocholacs
,
J.
Dammers
,
E.
Eich
,
N. J.
Shah
,
A. B.
Ermakov
 et al,
IEEE Trans. Appl. Supercond.
23
,
1600705
(
2013
).
10.
F.
Oisjoen
,
J. F.
Schneidermann
,
G. A.
Figueras
,
M. L.
Chukharkin
,
A.
Kalabukhov
,
A.
Hedstrom
,
M.
Elam
, and
D.
Winkler
,
Appl. Phys. Lett.
100
,
132601
(
2012
).
11.
J.
Schneiderman
,
J. Neurosci. Methods
222
,
42
(
2014
).
12.
M.
Xie
,
J.
Schneiderman
,
M. L.
Chukharkin
,
A.
Kalabukhov
,
S.
Whitmarch
,
D.
Lundqvist
, and
D.
Winkler
,
IEEE Trans. Appl. Supercond.
25
,
1601905
(
2015
).
13.
R. P.
Welty
and
J. M.
Martinis
,
IEEE Trans. Magn.
27
,
2924
(
1991
).
14.
R. P.
Welty
and
J. M.
Martinis
,
IEEE Trans. Appl. Supercond.
3
,
2605
(
1993
).
15.
K. G.
Stawiasz
and
M. B.
Ketchen
,
IEEE Trans. Appl. Supercond.
3
,
1808
(
1993
).
16.
V.
Foglietti
,
K. G.
Stawiasz
,
M. B.
Ketchen
, and
R. H.
Koch
,
IEEE Trans. Appl. Supercond.
3
,
3061
(
1993
).
17.
K.
Li
and
S. P.
Hubbell
,
IEEE Trans. Appl. Supercond.
5
,
3255
(
1995
).
18.
K.
Li
and
S. P.
Hubbell
,
IEEE Trans. Appl. Supercond.
7
,
3217
(
1997
).
19.
K.
Li
,
S. P.
Hubbell
,
R.
Cantor
, and
M.
Teepe
,
IEEE Trans. Appl. Supercond.
9
,
4420
(
1999
).
20.
S. H.
Wu
,
M. H.
Hsu
,
K. L.
Chen
,
J. C.
Chen
,
J. T.
Jeng
,
T. S.
Lai
,
H. R.
Horng
, and
H. C.
Yang
,
Supercond. Sci. Technol.
19
,
S246
(
2006
).
21.
S. G.
Lee
,
Y.
Huh
,
G. S.
Park
,
I. S.
Kim
,
Y. K.
Park
, and
J. C.
Park
,
IEEE Trans. Appl. Supercond.
7
,
3347
(
1997
).
22.
C. H.
Wu
,
M. J.
Chen
,
J. C.
Chen
,
K. L.
Chen
,
H. C.
Yang
,
M. S.
Hsu
,
T. S.
Lai
,
Y. S.
Tsai
,
H. E.
Horng
,
J. H.
Chen
 et al,
Rev. Sci. Instrum.
77
,
033901
(
2006
).
23.
B.
Chesca
,
D.
Koelle
, and
R.
Kleiner
, “
SQUID theory
,” in
The SQUID Handbook
, edited by
J.
Clarke
and
A. I.
Braginski
(
Wiley-VCH
,
Weinheim
,
2004
), p.
29
.
24.
D.
Koelle
,
R.
Kleiner
,
F.
Ludwig
,
E.
Dansker
, and
J.
Clarke
,
Rev. Mod. Phys.
71
,
631
(
1999
).
25.
J. M.
Jaycox
and
M. B.
Ketchen
,
IEEE Trans. Magn.
17
,
400
(
1981
).
26.
Y.
Tarutani
,
H.
Hasegawa
,
T.
Fukazawa
, and
K.
Takagi
,
J. Appl. Phys.
83
,
5000
(
1998
).
27.
H.
Burkhardt
,
O.
Brugmann
,
A.
Rauther
,
F.
Schnell
, and
M.
Shilling
,
IEEE Trans. Appl. Supercond.
9
,
3153
(
1999
).
You do not currently have access to this content.