Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

1.
N. P.
Wells
,
G. A.
Lessard
,
P. M.
Goodwin
,
M. E.
Phipps
,
P. J.
Cutler
,
D. S.
Lidke
,
B. S.
Wilson
, and
J. H.
Werner
,
Nano Lett.
10
(
11
),
4732
(
2010
).
2.
K.
Welsher
and
H.
Yang
,
Nat. Nanotechnol.
9
(
3
),
198
(
2014
).
3.
C.
Liu
,
E. P.
Perillo
,
Q.
Zhuang
,
K. T.
Huynh
,
A. K.
Dunn
, and
H.-C.
Yeh
,
Proc. SPIE
8950C
,
1
(
2014
).
4.
E.
Perillo
,
Y.-L.
Liu
,
C.
Liu
,
H.-C.
Yeh
, and
A. K.
Dunn
,
Proc. SPIE
9331
,
933107
(
2015
).
5.
E.
Perillo
,
Y.-L.
Liu
,
K.
Huynh
,
C.
Liu
,
H.-C.
Yeh
, and
A. K.
Dunn
,
Nat. Commun.
6
,
7874
(
2015
).
6.
M. F.
Juette
and
J.
Bewersdorf
,
Nano Lett.
10
(
11
),
4657
(
2010
).
7.
G. A.
Lessard
,
P. M.
Goodwin
, and
J. H.
Werner
,
Appl. Phys. Lett.
91
(
22
),
224106
(
2007
).
8.
Hu.
Cang
,
C. M.
Wong
,
C. S.
Xu
,
A. H.
Rizvi
, and
H.
Yang
,
Appl. Phys. Lett.
88
(
22
),
223901
(
2006
).
9.
R. S.
Kasai
and
A.
Kusumi
,
Curr. Opin. Cell Biol.
27
,
78
(
2014
).
10.
A.
Kusumi
,
T. A.
Tsunoyama
,
K. M.
Hirosawa
,
R. S.
Kasai
, and
T. K.
Fujiwara
,
Nat. Chem. Biol.
10
(
7
),
524
(
2014
).
11.
See supplementary material at http://dx.doi.org/10.1063/1.4932224 for explanation in detail of the working principle of TSUNAMI microscope, Monte Carlo simulations of the 3D tracking with ESA or MLE algorithm. It also contains additional simulation data to support our conclusion.
12.
N. P.
Wells
,
G. A.
Lessard
, and
J. H.
Werner
,
Anal. Chem.
80
(
24
),
9830
(
2008
).
13.
S. J.
Sahl
,
M.
Leutenegger
,
M.
Hilbert
,
S. W.
Hell
, and
C.
Eggeling
,
Proc. Natl. Acad. Sci. U. S. A.
107
(
15
),
6829
(
2010
).
14.
S. J.
Sahl
,
M.
Leutenegger
,
S. W.
Hell
, and
C.
Eggeling
,
ChemPhysChem
15
(
4
),
771
(
2014
).
15.
X.
Michalet
,
Phys. Rev. E
82
(
4
),
041914
(
2010
).
16.
C.
Dietrich
,
B.
Yang
,
T.
Fujiwara
,
A.
Kusumi
, and
K.
Jacobson
,
Biophys. J.
82
(
1
),
274
(
2002
).
17.
T.
Savin
and
P. S.
Doyle
,
Biophys. J.
88
(
1
),
623
(
2005
).
18.
V.
Levi
,
Q.
Ruan
, and
E.
Gratton
,
Biophys. J.
88
(
4
),
2919
(
2005
).
19.
A. J.
Berglund
and
H.
Mabuchi
,
Appl. Phys. B.
83
(
1
),
127
(
2006
).
20.
G. A.
Lessard
,
P. M.
Goodwin
, and
J. H.
Werner
,
Proc. SPIE
7185
,
71850Z
(
2009
).
21.
X. S.
Xie
,
J. Chem. Phys.
117
(
24
),
11024
(
2002
).
22.
H. P.
Lu
and
X. S.
Xie
,
Nature
385
(
6612
),
143
(
1997
).
23.
P. D.
Welch
,
IEEE Trans. Audio Electroacoust.
15
(
2
),
70
(
1967
).
24.
Q.
Wang
and
W. E.
Moerner
,
Nat. Methods
11
(
5
),
555
(
2014
).
25.
I.
Chung
,
R.
Akita
,
R.
Vandlen
,
D.
Toomre
,
J.
Schlessinger
, and
I.
Mellman
,
Nature
464
(
7289
),
783
(
2010
).
26.
R.
Das
,
C. W.
Cairo
, and
D.
Coombs
,
PLoS Comput. Biol.
5
(
11
),
e1000556
(
2009
).
27.
F.
Persson
,
M.
Linden
,
C.
Unoson
, and
J.
Elf
,
Nat. Methods
10
(
3
),
265
(
2013
).

Supplementary Material

You do not currently have access to this content.