We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz–MHz) devices.

1.
H.
Ji
,
X.
Zhao
,
Z.
Qiao
,
J.
Jung
,
Y.
Zhu
,
Y.
Lu
,
L. L.
Zhang
,
A. H.
MacDonald
, and
R. S.
Ruoff
,
Nat. Commun.
5
,
3317
(
2014
).
2.
H.
Yuan
,
H.
Shimotani
,
J.
Ye
,
S.
Yoon
,
H.
Aliah
,
A.
Tsukazaki
,
M.
Kawasaki
, and
Y.
Iwasa
,
J. Am. Chem. Soc.
132
,
18402
(
2010
).
3.
S. H.
Kim
,
K.
Hong
,
W.
Xie
,
K. H.
Lee
,
S.
Zhang
,
T. P.
Lodge
, and
C. D.
Frisbie
,
Adv. Mater.
25
,
1822
(
2013
).
4.
J. H.
Cho
,
J.
Lee
,
Y.
Xia
,
B.
Kim
,
Y.
He
,
M. J.
Renn
,
T. P.
Lodge
, and
C. D.
Frisbie
,
Nat. Mater.
7
,
900
(
2008
).
5.
B.
Nasr
,
D.
Wang
,
R.
Kruk
,
H.
Rösner
,
H.
Hahn
, and
S.
Dasgupta
,
Adv. Funct. Mater.
23
,
1750
(
2013
).
6.
J.
Liu
,
L.
Heriogsson
,
A.
Sawatdee
,
P.
Favia
,
M.
Sandberg
,
X.
Crispin
,
I.
Engquist
, and
M.
Berggren
,
Appl. Phys. Lett.
97
,
103303
(
2010
).
7.
L.
Herlogsson
,
Y.-Y.
Noh
,
N.
Zhao
,
X.
Crispin
,
H.
Sirringhaus
, and
M.
Berggren
,
Adv. Mater.
20
,
4708
(
2008
).
8.
L.
Kergoat
,
L.
Heriogsson
,
B.
Piro
,
M. C.
Pham
,
G.
Horowitz
,
X.
Crispin
, and
M.
Berggren
,
PNAS
109
(
22
),
8394
(
2012
).
9.
J.
Pu
,
Y.
Yomogida
,
K.-K.
Liu
,
L.-J.
Li
,
Y.
Iwasa
, and
T.
Takenobu
,
Nano Lett.
12
,
4013
(
2012
).
10.
J.
Pu
,
Y.
Zhang
,
Y.
Wada
,
J. T.-W.
Wang
,
L.-J.
Li
,
Y.
Iwasa
, and
T.
Takenobu
,
Appl. Phys. Lett.
103
,
023505
(
2013
).
11.
J.
Pu
,
L.-J.
Li
, and
T.
Takenobu
,
Phys. Chem. Chem. Phys.
16
,
14996
(
2014
).
12.
I.
Lokteva
,
S.
Thiemann
,
F.
Ganott
, and
J.
Zaumseil
,
Nanoscale
5
,
4230
(
2013
).
13.
J.
Zaumseil
,
F.
Jakubka
,
M.
Wang
, and
F.
Gannott
,
J. Phys. Chem. C
117
(
49
),
26361
(
2013
).
14.
J.
Zaumseil
,
X.
Ho
,
J. R.
Guest
,
G. P.
Wiederrecht
, and
J. A.
Rogers
,
ACS Nano
3
(
8
),
2225
(
2009
).
15.
J.-K.
Huang
,
J.
Pu
,
C.-L.
Hsu
,
M.-H.
Chiu
,
Z.-Y.
Juang
,
Y.-H.
Chang
,
W.-H.
Chang
,
Y.
Iwasa
,
T.
Takenobu
, and
L.-J.
Li
,
ACS Nano
8
(
1
),
923
(
2014
).
16.
Y. J.
Zhang
,
J. T.
Ye
,
Y.
Yomogida
,
T.
Takenobu
, and
Y.
Iwasa
,
Nano Lett.
13
(
7
),
3023
(
2013
).
17.
K.
Yanagi
,
S.
Kanda
,
Y.
Oshima
,
Y.
Kitamura
,
H.
Kawai
,
T.
Yamamoto
,
T.
Takenobu
,
Y.
Nakai
, and
Y.
Maniwa
,
Nano Lett.
14
(
11
),
6437
(
2014
).
18.
H.
Shimotani
,
S.
Tsuda
,
H.
Yuan
,
Y.
Yomogida
,
R.
Moriya
,
T.
Takenobu
,
K.
Yanagi
, and
Y.
Iwasa
,
Adv. Funct. Mater.
24
(
22
),
3305
(
2014
).
19.
H.
Kawai
,
K.
Hasegawa
,
T.
Nakatsu
,
Y.
Naitoh
,
Y.
Takagi
,
Y.
Wada
,
T.
Takenobu
, and
K.
Yanagi
,
Appl. Phys. Express
6
,
065103
(
2013
).
20.
Y.
Yomogida
,
J.
Pu
,
H.
Shimotani
,
S.
Ono
,
S.
Hotta
,
Y.
Iwasa
, and
T.
Takenobu
,
Adv. Mater.
24
(
32
),
4392
(
2012
).
21.
T.
Sakanoue
,
K.
Sawabe
,
Y.
Yomogida
,
T.
Takenobu
,
S.
Seki
, and
S.
Ono
,
Appl. Phys. Lett.
100
,
263301
(
2012
).
22.
K. H.
Lee
,
S.
Zhang
,
T. P.
Lodge
, and
C. D.
Frisbie
,
J. Phys. Chem. B
115
,
3315
(
2011
).
23.
S.
Zhang
,
K. H.
Lee
,
J.
Sun
,
C. D.
Frisbie
, and
T. P.
Lodge
,
Macromolecules
44
,
8981
(
2011
).
24.
Md. A. B. H.
Susan
,
T.
Kaneko
,
A.
Noda
, and
M.
Watanabe
,
J. Am. Chem. Soc.
127
,
4976
(
2005
).
25.
J.
Lee
,
L. G.
Kaake
,
J. H.
Cho
,
X.-Y.
Zhu
,
T. P.
Lodge
, and
C. D.
Frisbie
,
J. Phys. Chem. C
113
(
20
),
8972
(
2009
).
26.
J. H.
Cho
,
J.
Lee
,
Y.
He
,
B. S.
Kim
,
T. P.
Lodge
, and
C. D.
Frisbie
,
Adv. Mater.
20
,
686
(
2008
).
27.
M.
Ha
,
J.-W. T.
Seo
,
P. L.
Prabhumirashi
,
W.
Zhang
,
M. L.
Geier
,
M. J.
Renn
,
C. H.
Kim
,
M. C.
Hersam
, and
C. D.
Frisbie
,
Nano Lett.
13
,
954
(
2013
).
28.
L.
Herlogsson
,
X.
Crispin
,
S.
Tierney
, and
M.
Berggern
,
Adv. Mater.
23
,
4684
(
2011
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4933255 for details about the derivation of theses equations.
30.
J. R.
Miller
and
P.
Simon
,
Science
321
,
651
(
2008
).
31.
P.
Simon
and
Y.
Gogotsi
,
Nat. Mater.
7
,
845
(
2008
).
32.
A. S.
Aricò
,
P.
Bruce
,
B.
Scrosati
,
J.-M.
Tarascon
, and
W. V.
Schalkwijk
,
Nat. Mater.
4
,
366
(
2005
).
33.
G. J.
Brug
,
A. L. G.
van den Eeden
,
M.
Sluyters-Rehbach
, and
J. H.
Sluyters
,
J. Electroanal. Chem.
176
,
275
(
1984
).
34.
S. C.
Hamm
,
S.
Basuray
,
S.
Mukherjee
,
S.
Sengupta
,
J. C.
Mathai
,
G. A.
Baker
, and
S.
Gangopadhyay
,
J. Mater. Chem. A
2
,
792
(
2014
).
35.
B.
Zhang
,
D.
Wang
,
Y.
Hou
,
S.
Yang
,
X. H.
Yang
,
J. H.
Zhong
,
J.
Liu
,
H. F.
Wang
,
P.
Hu
,
H. J.
Zhao
, and
H. G.
Yang
,
Sci. Rep.
3
,
1836
(
2013
).
36.
D. R.
Franceschetti
,
J. R.
Macdonald
, and
R. P.
Buck
,
J. Electrochem. Soc.
138
(
5
),
1368
(
1991
).
37.
S.
Dasgupta
,
G.
Stoesser
,
N.
Schweikert
,
R.
Hahn
,
S.
Dehm
,
R.
Kruk
, and
H.
Hahn
,
Adv. Funct. Mater.
22
,
4909
(
2012
).
38.
A.
Noda
,
K.
Hayamizu
, and
M.
Watanabe
,
J. Phys. Chem. B
105
,
4603
(
2001
).

Supplementary Material

You do not currently have access to this content.