Phase Change Materials (PCM) show two stable states in the solid phase with significantly different optical and electronic properties. They can be switched reversibly between those two states and are promising candidates for future non-volatile memory applications. The development of phase change devices demands characterization tools, yielding information about the switching process at high spatial resolution. Scattering-type Scanning Near-field Optical Microscopy (s-SNOM) allows for spectroscopic analyses of the different optical properties of the PCMs on the nm-scale. By correlating the optical s-SNOM images with transmission electron microscopy images of the same sample, we unambiguously demonstrate the correlation of the infrared optical contrast with the structural state of the phase change material. The investigated sample consists of sandwiched amorphous and crystalline regions of Ag4In3Sb67Te26 below a 100nm thick (ZnS)80(SiO2)20 capping layer. Our results demonstrate the sensitivity of s-SNOM to small dielectric near-field contrasts even below a comparably thick capping layer (100nm).

1.
S. R.
Ovshinsky
,
Phys. Rev. Lett.
21
,
1450
(
1968
).
2.
M.
Wuttig
and
N.
Yamada
,
Nat. Mater.
6
,
824
(
2007
).
3.
D.
Lencer
,
M.
Salinga
, and
M.
Wuttig
,
Adv. Mater.
23
,
2030
(
2011
).
4.
S.-W.
Nam
,
H.-S.
Chung
,
Y. C.
Lo
,
L.
Qi
,
J.
Li
,
Y.
Lu
,
A. C.
Johnson
,
Y.
Jung
,
P.
Nukala
, and
R.
Agarwal
,
Science
336
,
1561
(
2012
).
5.
M.
Salinga
,
E.
Carria
,
A.
Kaldenbach
,
M.
Bornhöfft
,
J.
Benke
,
J.
Mayer
, and
M.
Wuttig
,
Nat. Commun.
4
,
2371
(
2013
).
6.
J. L. M.
Oosthoek
,
F. C.
Voogt
,
K.
Attenborough
,
M. A.
Verheijen
,
G. A. M.
Hurkx
,
D. J.
Gravesteijn
, and
B. J.
Kooi
,
J. Appl. Phys.
117
,
064504
(
2015
).
7.
I.
Friedrich
,
V.
Weidenhof
,
W.
Njoroge
,
P.
Franz
, and
M.
Wuttig
,
J. Appl. Phys.
87
,
4130
(
2000
).
8.
T.
Siegrist
,
P.
Jost
,
H.
Volker
,
M.
Woda
,
P.
Merkelbach
,
C.
Schlockermann
, and
M.
Wuttig
,
Nat. Mater.
10
,
202
(
2011
).
9.
K.
Shportko
,
S.
Kremers
,
M.
Woda
,
D.
Lencer
,
J.
Robertson
, and
M.
Wuttig
,
Nat. Mater.
7
,
653
(
2008
).
10.
D.
Lencer
,
M.
Salinga
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
, and
M.
Wuttig
,
Nat. Mater.
7
,
972
(
2008
).
11.
T.
Taubner
,
R.
Hillenbrand
, and
F.
Keilmann
,
J. Microsc.
210
,
311
(
2003
).
12.
F.
Keilmann
and
R.
Hillenbrand
,
Philos. Trans. R. Soc. A
362
,
787
(
2004
).
13.
J. M.
Atkin
,
S.
Berweger
,
A. C.
Jones
, and
M. B.
Raschke
,
Adv. Phys.
61
,
745
(
2012
).
14.
T.
Taubner
,
R.
Hillenbrand
, and
F.
Keilmann
,
Appl. Phys. Lett.
85
,
5064
(
2004
).
15.
A. A.
Govyadinov
,
I.
Amenabar
,
F.
Huth
,
P. S.
Carney
, and
R.
Hillenbrand
,
J. Phys. Chem. Lett.
4
,
1526
(
2013
).
16.
A. S.
McLeod
,
P.
Kelly
,
M. D.
Goldflam
,
Z.
Gainsforth
,
A. J.
Westphal
,
G.
Dominguez
,
M. H.
Thiemens
,
M. M.
Fogler
, and
D. N.
Basov
,
Phys. Rev. B
90
,
085136
(
2014
).
17.
A. A.
Govyadinov
,
S.
Mastel
,
F.
Golmar
,
A.
Chuvilin
,
P. S.
Carney
, and
R.
Hillenbrand
,
ACS Nano
8
,
6911
(
2014
).
18.
J.
Tominaga
,
T.
Nakano
, and
N.
Atoda
,
Appl. Phys. Lett.
73
,
2078
(
1998
).
19.
M.
Schüttler
,
M.
Leuschner
, and
H.
Giessen
,
Jpn. J. Appl. Phys., Part 2
38
,
L1463
(
1999
).
20.
M. M.
Qazilbash
,
M.
Brehm
,
B.-G.
Chae
,
P.-C.
Ho
,
G. O.
Andreev
,
B.-J.
Kim
,
S. J.
Yun
,
A. V.
Balatsky
,
M. B.
Maple
,
F.
Keilmann
,
H.-T.
Kim
, and
D. N.
Basov
,
Science
318
,
1750
(
2007
).
21.
A. C.
Jones
,
S.
Berweger
,
J.
Wei
,
D.
Cobden
, and
M. B.
Raschke
,
Nano Lett.
10
,
1574
(
2010
).
22.
M.
Liu
,
A. J.
Sternbach
,
M.
Wagner
,
T. V.
Slusar
,
T.
Kong
,
S. L.
Bud'ko
,
S.
Kittiwatanakul
,
M. M.
Qazilbash
,
A.
McLeod
,
Z.
Fei
,
E.
Abreu
,
J.
Zhang
,
M.
Goldflam
,
S.
Dai
,
G.-X.
Ni
,
J.
Lu
,
H. A.
Bechtel
,
M. C.
Martin
,
M. B.
Raschke
,
R. D.
Averitt
,
S. A.
Wolf
,
H.-T.
Kim
,
P. C.
Canfield
, and
D. N.
Basov
,
Phys. Rev. B
91
,
245155
(
2015
).
23.
B.
Hauer
,
T.
Saltzmann
,
U.
Simon
, and
T.
Taubner
,
Nano Lett.
15
,
2787
(
2015
).
24.
T.
Taubner
,
F.
Keilmann
, and
R.
Hillenbrand
,
Opt. Express
13
,
8893
(
2005
).
25.
M.
Woda
, “
Electrical transport in crystalline phase change materials
,” Ph.D. dissertation (
RWTH Aachen University
,
2010
).
26.
S.
Kremers
, “
Optische Eigenschaften von Phasenwechselmaterialien für zukünftige optische und elektronische Speicheranwendungen
,” Ph.D. dissertation (
RWTH Aachen University
,
2009
).
27.
A.
Cvitkovic
,
N.
Ocelić
, and
R.
Hillenbrand
,
Opt. Express
15
,
8550
(
2007
).
28.
B.
Hauer
,
A. P.
Engelhardt
, and
T.
Taubner
,
Opt. Express
20
,
13173
(
2012
).
29.
Z.
Fei
,
G. O.
Andreev
,
W.
Bao
,
L. M.
Zhang
,
A. S.
McLeod
,
C.
Wang
,
M. K.
Stewart
,
Z.
Zhao
,
G.
Dominguez
,
M.
Thiemens
,
M. M.
Fogler
,
M. J.
Tauber
,
A. H.
Castro-Neto
,
C. N.
Lau
,
F.
Keilmann
, and
D. N.
Basov
,
Nano Lett.
11
,
4701
(
2011
).
30.
I. E.
Bolotov
and
V. Yu.
Kolosov
,
Phys. Status Solidi A
69
,
85
(
1982
).
31.
I. E.
Bolotov
,
V. Y.
Kolosov
, and
A. V.
Kozhyn
,
Phys. Status Solidi A
72
,
645
(
1982
).
32.
P.
Yeh
,
Optical Waves in Layered Media
(
John Wiley & Sons, Inc.
,
2005
).
33.
T.
Zhan
,
X.
Shi
,
Y.
Dai
,
X.
Liu
, and
J.
Zi
,
J. Phys. Condens. Matter
25
,
215301
(
2013
).
34.
A.-K. U.
Michel
,
P.
Zalden
,
D. N.
Chigrin
,
M.
Wuttig
,
A. M.
Lindenberg
, and
T.
Taubner
,
ACS Photonics
1
,
833
(
2014
).
35.
P.
Li
,
X.
Yang
,
T. W. W.
Mass
,
A.-K. U.
Michel
,
M.
Wuttig
, and
T.
Taubner
, “
Reversible optical switching of highly-confined phonon polaritons with an ultra-thin phase change material
,”
Nat. Mater.
(submitted).
36.
T.
Taubner
,
D.
Korobkin
,
Y.
Urzhumov
,
G.
Shvets
, and
R.
Hillenbrand
,
Science
313
,
1595
(
2006
).
37.
P.
Li
,
T.
Wang
,
H.
Böckmann
, and
T.
Taubner
,
Nano Lett.
14
,
4400
(
2014
).
You do not currently have access to this content.