High-Tc Superconducting (HTS) magnets operating in persistent current mode suffer a current decay due to flux creep of superconductor and joint resistance. Flux pumps are able to inject direct current into superconducting circuit to compensate the current decay, without the thermal loss caused by current leads. In this work, we proposed a flux pumping mechanism for HTS coils, with an experimental verification and an analytical model. The basic principle we have used is that flux flow can be triggered when the superconductor carrying a direct current is subjected to a perpendicular AC magnetic field. Low frequency alternating current is induced in a loop of YBCO tape using an AC field. A portion of the tape which we refer to as the “bridge” shorts a superconducting coil. A high frequency AC field is applied perpendicular to the bridge tape when alternating current in the tape reaches one polarity. This triggers a net flux flow and results in a current increase in the coil. The proposed flux pump has clear physics and is easily controllable, which may make it promising in practical use.

1.
B. J.
Parkinson
,
R.
Slade
,
M. J. D.
Mallett
, and
V.
Chamritski
,
IEEE Trans. Appl. Supercond.
23
,
4400405
(
2013
).
2.
Y.
Jiang
,
R.
Pei
,
W.
Xian
,
Z.
Hong
, and
T. A.
Coombs
,
Supercond. Sci. Technol.
21
,
065011
(
2008
).
3.
T.
Tosaka
,
T.
Kuriyama
,
M.
Yamaji
,
K.
Kuwano
,
M.
Igarashi
, and
M.
Terai
,
IEEE Trans. Appl. Supercond.
14
,
1218
(
2004
).
4.
K.
Koyanagi
,
S.
Matsumoto
,
K.
Fukushima
,
T.
Kiyoshi
, and
H.
Wada
,
IEEE Trans. Appl. Supercond.
12
,
476
(
2002
).
5.
M. V.
Feigel'man
,
V. B.
Geshkenbein
, and
V. M.
Vinokur
,
Phys. Rev. B
43
,
6263(R)
(
1991
).
6.
L. J. M.
van de Klundert
and
H. H. J.
ten Kate
,
Cryogenics
21
,
195
(
1981
);
L. J. M.
van de Klundert
and
H. H. J.
ten Kate
,
Cryogenics
21
,
267
(
1981
).
7.
H.
Lee
,
H. M.
Kim
, and
Y.
Iwasa
,
IEEE Trans. Appl. Supercond.
13
,
1640
1643
(
2003
).
8.
M. P.
Oomen
,
M.
Leghissa
,
G.
Ries
,
N.
Proelss
,
H. W.
Neumueller
,
F.
Steinmeyer
,
M.
Vester
, and
F.
Davies
,
IEEE Trans. Appl. Supercond.
15
,
1465
(
2005
).
9.
T.
Nakamura
,
M.
Sugano
,
T.
Doi
, and
N.
Amemiya
,
IEEE Trans. Appl. Supercond.
20
,
1033
(
2010
).
10.
Z.
Bai
,
G.
Yan
,
C.
Wu
,
S.
Ding
, and
C.
Chen
,
Cryogenics
50
(
10
),
688
(
2010
).
11.
C.
Hoffmann
,
D.
Pooke
, and
A. D.
Caplin
,
IEEE Trans. Appl. Supercond.
21
,
1628
(
2011
);
C.
Hoffmann
,
R.
Walsh
,
E.
Karrer-Mueller
, and
D.
Pooke
,
Phys. Proc.
36
,
1324
(
2012
);
R. M.
Walsh
,
R.
Slade
,
D.
Pooke
, and
C.
Hoffmann
,
IEEE Trans. Appl. Supercond.
24
,
4600805
(
2014
).
12.
W.
Wang
and
T. A.
Coombs
,
J. Appl. Phys.
113
,
213906
(
2013
);
W.
Wang
,
F.
Spaven
,
M.
Zhang
,
M.
Baghdadi
, and
T. A.
Coombs
,
Appl. Phys. Lett.
104
,
032602
(
2014
).
13.
T. A.
Coombs
,
J. F.
Fagnard
, and
K.
Matsuda
,
IEEE Trans. Appl. Supercond.
24
,
8201005
(
2014
).
14.
Z.
Jiang
,
K.
Hamilton
,
N.
Amemiya
,
R. A.
Badcock
, and
C. W.
Bumby
,
Appl. Phys. Lett.
105
,
112601
(
2014
).
15.
L.
Fu
,
K.
Matsuda
,
M.
Baghdadi
, and
T.
Coombs
,
IEEE Trans. Appl. Supercond.
25
,
4603804
(
2015
).
16.
V. V.
Andrianov
,
V. B.
Zenkevich
,
V. V.
Kurguzov
,
V. V.
Sychev
, and
F. F.
Ternovskii
,
Sov. Phys. JETP
31
,
815
(
1970
).
17.
T.
Ogasawara
,
K.
Yasukochi
,
S.
Nose
, and
H.
Sekizawa
,
Cryogenics
16
(
1
),
33
(
1976
);
T.
Ogasawara
,
Y.
Takahashi
,
K.
Kanbara
,
Y.
Kubota
,
K.
Yasohama
, and
K.
Yasukochi
,
Cryogenics
19
(
12
),
736
(
1979
).
18.
M. P.
Oomen
,
J.
Rieger
,
M.
Leghissa
,
B.
ten Haken
, and
H. H. J.
ten Kate
,
Supercond. Sci. Technol.
12
,
382
(
1999
).
19.
C. P.
Bean
,
Rev. Mod. Phys.
36
(
1P1
),
31
(
1964
).
You do not currently have access to this content.