The critical temperature and saturation magnetization for four- and five-component FCC transition metal alloys are predicted using a formalism that combines density functional theory and a magnetic mean-field model. Our theoretical results are in excellent agreement with experimental data presented in both this work and in the literature. The generality and power of this approach allow us to computationally design alloys with well-defined magnetic properties. Among other alloys, the method is applied to CoCrFeNiPd alloys, which have attracted attention recently for potential magnetic applications. The computational framework is able to predict the experimentally measured TC and to explore the dominant mechanisms for alloying trends with Pd. A wide range of ferromagnetic properties and Curie temperatures near room temperature in hitherto unexplored alloys is predicted in which Pd is replaced in varying degrees by, e.g., Ag, Au, and Cu.

1.
B.
Murty
,
J.-W.
Yeh
, and
S.
Ranganathan
,
High-Entropy Alloys
(
Butterworth-Heinemann
,
2014
);
Y.
Zhang
,
T. T.
Zuo
,
Z.
Tang
,
M. C.
Gao
,
K. A.
Dahmen
,
P. K.
Liaw
, and
Z. P.
Lu
,
Prog. Mater. Sci.
61
,
1
(
2014
).
2.
B.
Gludovatz
,
A.
Hohenwarter
,
D.
Catoor
,
E. H.
Chang
,
E. P.
George
, and
R. O.
Ritchie
,
Science
345
,
1153
(
2014
).
3.
M. S.
Lucas
,
L.
Mauger
,
J. A.
Muñoz
,
Y.
Xiao
,
A. O.
Sheets
,
S. L.
Semiatin
,
J.
Horwath
, and
Z.
Turgut
,
J. Appl. Phys.
109
,
07E307
(
2011
).
4.
M. S.
Lucas
,
D.
Belyea
,
C.
Bauer
,
N.
Bryant
,
E.
Michel
,
Z.
Turgut
,
S. O.
Leontsev
,
J.
Horwath
,
S. L.
Semiatin
,
M. E.
McHenry
 et al.,
J. Appl. Phys.
113
,
17A923
(
2013
).
5.
O.
Tegus
,
E.
Brück
,
K. H. J.
Buschow
, and
F. R.
de Boer
,
Nature
415
,
150
(
2002
);
[PubMed]
H.
Ucar
,
J. J.
Ipus
,
V.
Franco
,
M. E.
McHenry
, and
D. E.
Laughlin
,
JOM
64
,
782
(
2012
);
O.
Gutfleisch
,
M. A.
Willard
,
E.
Brück
,
C. H.
Chen
,
S. G.
Sankar
, and
J. P.
Liu
,
Adv. Mater.
23
,
821
(
2011
);
[PubMed]
R. D.
McMichael
,
R. D.
Shull
,
L. J.
Swartzendruber
,
L. H.
Bennett
, and
R. E.
Watson
,
J. Magn. Magn. Mater.
111
,
29
(
1992
).
6.
Y.-F.
Kao
,
S.-K.
Chen
,
T.-J.
Chen
,
P.-C.
Chu
,
J.-W.
Yeh
, and
S.-J.
Lin
,
J. Alloys Compd.
509
,
1607
(
2011
).
7.
G. Y.
Gao
,
K. L.
Yao
,
E.
Şaşıoğlu
,
L. M.
Sandratskii
,
Z. L.
Liu
, and
J. L.
Jiang
,
Phys. Rev. B
75
,
174442
(
2007
).
8.
M.
Pajda
,
J.
Kudrnovsky
,
I.
Turek
,
V.
Drchal
, and
P.
Bruno
,
Phys. Rev. B
64
,
174402
(
2001
).
9.
F.
Körmann
,
A.
Dick
,
B.
Grabowski
,
B.
Hallstedt
,
T.
Hickel
, and
J.
Neugebauer
,
Phys. Rev. B
78
,
033102
(
2008
).
10.
F.
Körmann
,
A.
Dick
,
T.
Hickel
, and
J.
Neugebauer
,
Phys. Rev. B
79
,
184406
(
2009
).
11.
M.
Ležaić
,
P.
Mavropoulos
, and
S.
Blügel
,
Appl. Phys. Lett.
90
,
082504
(
2007
).
12.
A. V.
Ruban
,
S.
Khmelevskyi
,
P.
Mohn
, and
B.
Johansson
,
Phys. Rev. B
75
,
054402
(
2007
).
13.
F.
Körmann
,
A.
Dick
,
T.
Hickel
, and
J.
Neugebauer
,
Phys. Rev. B
81
,
134425
(
2010
).
14.
N. M.
Rosengaard
and
B.
Johansson
,
Phys. Rev. B
55
,
14975
(
1997
).
15.
F.
Körmann
,
A. A. H.
Breidi
,
S. L.
Dudarev
,
N.
Dupin
,
G.
Ghosh
,
T.
Hickel
,
P.
Korzhavyi
,
J. A.
Muñoz
, and
I.
Ohnuma
,
Phys. Status Solidi B
251
,
53
(
2014
);
F.
Körmann
,
T.
Hickel
, and
J.
Neugebauer
, “
Influence of magnetic excitations on the phase stability of metals and steels
,”
Curr. Opin. Solid State Mater. Sci.
(published online).
16.
E.
Şaşıoğlu
,
L. M.
Sandratskii
, and
P.
Bruno
,
Phys. Rev. B
70
,
024427
(
2004
);
E.
Şaşıoğlu
,
L.
Sandratskii
, and
P.
Bruno
,
Phys. Rev. B
71
,
214412
(
2005
).
17.
K.
Sato
,
P.
Dederics
, and
H.
Katayama-Yoshida
,
Europhys. Lett.
61
,
403
(
2003
).
18.
G.
Bouzerar
,
J.
Kudrnovsky
,
L.
Bergqvist
, and
P.
Bruno
,
Phys. Rev. B
68
,
081203
(
2003
).
19.
L.
Bergqvist
,
O.
Eriksson
,
J.
Kudrnovský
,
V.
Drchal
,
P.
Korzhavyi
, and
I.
Turek
,
Phys. Rev. Lett.
93
,
137202
(
2004
).
20.
L.
Bergqvist
,
B.
Belhadji
,
S.
Picozzi
, and
P. H.
Dederichs
,
Phys. Rev. B
77
,
014418
(
2008
).
21.
K.
Sato
,
L.
Bergqvist
,
J.
Kudrnovský
,
P. H.
Dederichs
,
O.
Eriksson
,
I.
Turek
,
B.
Sanyal
,
G.
Bouzerar
,
H.
Katayama-Yoshida
,
V.
Dinh
 et al.,
Rev. Mod. Phys.
82
,
1633
(
2010
).
22.
J. M.
MacLaren
,
T. C.
Schulthess
,
W. H.
Butler
,
R. S.
Sutton
, and
M.
McHenry
,
J. Appl. Phys.
85
,
4833
(
1999
).
23.
K.
Sato
,
W.
Schweika
,
P.
Dederichs
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
70
,
201202
(
2004
).
A. V.
Ruban
and
H. L.
Skriver
,
Phys. Rev. B
66
,
024201
(
2002
);
A. V.
Ruban
,
A. B.
Belonoshko
, and
N. V.
Skorodumova
,
Phys. Rev. B
87
,
014405
(
2013
);
M.
Rahaman
,
B.
Johansson
, and
A. V.
Ruban
,
Phys. Rev. B
89
,
064103
(
2014
);
L.
Vitos
,
H. L.
Skriver
,
B.
Johansson
, and
J.
Kollár
,
Comput. Mater. Sci.
18
,
24
(
2000
);
L.
Vitos
,
Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications
(
Springer Science & Business Media
,
2007
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
); Self-consistent electronic density calculations employ the local density approximation, while the total energy has been obtained within the GGA.
B. L.
Gyorffy
,
Phys. Rev. B
5
,
2382
(
1972
).
27.
J.
Staunton
,
B. L.
Gyorffy
,
A. J.
Pindor
,
G. M.
Stocks
, and
H.
Winter
,
J. Magn. Magn. Mater.
45
,
15
(
1984
);
B. L.
Gyorffy
,
A. J.
Pindor
,
J.
Staunton
,
G. M.
Stocks
, and
H.
Winter
,
J. Phys. F: Met. Phys.
15
,
1337
(
1985
).
28.
F.
Tian
,
L.
Delczeg
,
N.
Chen
,
L. K.
Varga
,
J.
Shen
, and
L.
Vitos
,
Phys. Rev. B
88
,
085128
(
2013
).
29.
F.
Tian
,
L. K.
Varga
,
N.
Chen
,
L.
Delczeg
, and
L.
Vitos
,
Phys. Rev. B
87
,
075144
(
2013
).
30.
F.
Tian
,
L. K.
Varga
,
N.
Chen
,
J.
Shen
, and
L.
Vitos
,
J. Alloys Compd.
599
,
19
(
2014
).
31.
E.
Fazakas
,
V.
Zadorozhnyy
,
L. K.
Varga
,
A.
Inoue
,
D. V.
Louzguine-Luzgin
,
F.
Tian
, and
L.
Vitos
,
Int. J. Refract. Met. Hard Mater.
47
,
131
(
2014
).
32.
P.
Cao
,
X.
Ni
,
F.
Tian
,
L. K.
Varga
, and
L.
Vitos
,
J. Phys.: Condens. Matter
27
,
075401
(
2015
).
33.
D.
Ma
,
B.
Grabowski
,
F.
Körmann
,
J.
Neugebauer
, and
D.
Raabe
,
Acta Mater.
100
,
90
(
2015
).
34.
C.
Niu
,
A. J.
Zaddach
,
A. A.
Oni
,
X.
Sang
,
J. W.
Hurt
 III
,
J. M.
LeBeau
,
C. C.
Koch
, and
D. L.
Irving
,
Appl. Phys. Lett.
106
,
161906
(
2015
).
35.
A. J.
Zaddach
,
C. C.
Niu
,
C.
Koch
, and
D. L.
Irving
,
JOM
65
,
1780
(
2013
).
36.
S.
Huang
,
W.
Li
,
S.
Lu
,
F.
Tian
,
J.
Shen
,
E.
Holmström
, and
L.
Vitos
,
Scr. Mater.
108
,
44
(
2015
).
37.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
38.
A.
Arrott
and
J. E.
Noakes
,
Phys. Rev. Lett.
19
,
786
(
1967
).
39.
Y.
Zhang
,
Y. J.
Zhou
,
J. P.
Lin
,
G. L.
Chen
, and
P. K.
Liaw
,
Adv. Eng. Mater.
10
,
534
(
2008
).
40.
M. C.
Troparevsky
,
J. R.
Morris
,
P. R. C.
Kent
,
A. R.
Lupini
, and
G. M.
Stocks
,
Phys. Rev. X
5
,
011041
(
2015
).
You do not currently have access to this content.