Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.

1.
R.
Henderson
,
Q. Rev. Biophys.
28
,
171
(
1995
).
2.
E.
Knapek
and
J.
Dubochet
,
J. Mol. Biol.
141
,
147
(
1980
).
3.
R. F.
Egerton
,
P.
Li
, and
M.
Malac
,
Micron
35
,
399
(
2004
).
4.
M.
van Heel
,
B.
Gowen
,
R.
Matadeen
,
E. V.
Orlova
,
R.
Finn
,
T.
Pape
,
D.
Cohen
,
H.
Stark
,
R.
Schmidt
,
M.
Schatz
, and
A.
Patwardhan
,
Q. Rev. Biophys.
33
,
307
(
2000
).
5.
J. W.
Miao
,
H. N.
Chapman
,
J.
Kirz
,
D.
Sayre
, and
K. O.
Hodgson
,
Annu. Rev. Biophys. Biomol. Struct.
33
,
157
(
2004
).
6.
R.
Neutze
,
R.
Wouts
,
D.
van der Spoel
,
E.
Weckert
, and
J.
Hajdu
,
Nature
406
,
752
(
2000
).
7.
V. L.
Shneerson
,
A.
Ourmazd
, and
D. K.
Saldin
,
Acta Crystallogr., Sect. A
64
,
303
(
2008
).
8.
H. N.
Chapman
,
P.
Fromme
,
A.
Barty
,
T. A.
White
,
R. A.
Kirian
,
A.
Aquila
,
M. S.
Hunter
,
J.
Schulz
,
D. P.
DePonte
,
U.
Weierstall
,
R. B.
Doak
,
F. R. N. C.
Maia
,
A. V.
Martin
,
I.
Schlichting
,
L.
Lomb
,
N.
Coppola
,
R. L.
Shoeman
,
S. W.
Epp
,
R.
Hartmann
,
D.
Rolles
,
A.
Rudenko
,
L.
Foucar
,
N.
Kimmel
,
G.
Weidenspointner
,
P.
Holl
,
M.
Liang
,
M.
Barthelmess
,
C.
Caleman
,
S.
Boutet
,
M. J.
Bogan
,
J.
Krzywinski
,
C.
Bostedt
,
S.
Bajt
,
L.
Gumprecht
,
B.
Rudek
,
B.
Erk
,
C.
Schmidt
,
A.
Homke
,
C.
Reich
,
D.
Pietschner
,
L.
Struder
,
G.
Hauser
,
H.
Gorke
,
J.
Ullrich
,
S.
Herrmann
,
G.
Schaller
,
F.
Schopper
,
H.
Soltau
,
K.-U.
Kuhnel
,
M.
Messerschmidt
,
J. D.
Bozek
,
S. P.
Hau-Riege
,
M.
Frank
,
C. Y.
Hampton
,
R. G.
Sierra
,
D.
Starodub
,
G. J.
Williams
,
J.
Hajdu
,
N.
Timneanu
,
M. M.
Seibert
,
J.
Andreasson
,
A.
Rocker
,
O.
Jonsson
,
M.
Svenda
,
S.
Stern
,
K.
Nass
,
R.
Andritschke
,
C.-D.
Schroter
,
F.
Krasniqi
,
M.
Bott
,
K. E.
Schmidt
,
X.
Wang
,
I.
Grotjohann
,
J. M.
Holton
,
T. R. M.
Barends
,
R.
Neutze
,
S.
Marchesini
,
R.
Fromme
,
S.
Schorb
,
D.
Rupp
,
M.
Adolph
,
T.
Gorkhover
,
I.
Andersson
,
H.
Hirsemann
,
G.
Potdevin
,
H.
Graafsma
,
B.
Nilsson
, and
J. C. H.
Spence
,
Nature
470
,
73
(
2011
).
9.
M.
Germann
,
T.
Latychevskaia
,
C.
Escher
, and
H.-W.
Fink
,
Phys. Rev. Lett.
104
,
095501
(
2010
).
10.
J.-N.
Longchamp
,
T.
Latychevskaia
,
C.
Escher
, and
H.-W.
Fink
,
Appl. Phys. Lett.
101
,
93701
(
2012
).
11.
T.
Latychevskaia
,
J.-N.
Longchamp
,
C.
Escher
, and
H.-W.
Fink
, “Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level,”
Ultramicroscopy
(to be published).
12.
L.
Livadaru
,
J.
Mutus
, and
R. A.
Wolkow
,
J. Appl. Phys.
110
,
094305
(
2011
).
13.
H.-W.
Fink
,
H.
Schmid
,
E.
Ermantraut
, and
T.
Schulz
,
J. Opt. Soc. Am. A
14
,
2168
(
1997
).
14.
P.
Simon
,
H.
Lichte
,
P.
Formanek
,
M.
Lehmann
,
R.
Huhle
,
W.
Carrillo-Cabrera
,
A.
Harscher
, and
H.
Ehrlich
,
Micron
39
,
229
(
2008
).
15.
G. B.
Stevens
,
M.
Krüger
,
T.
Latychevskaia
,
P.
Lindner
,
A.
Plückthun
, and
H.-W.
Fink
,
Eur. Biophys. J.
40
,
1197
(
2011
).
16.
T.
Latychevskaia
,
J.-N.
Longchamp
,
C.
Escher
, and
H.-W.
Fink
,
Ultramicroscopy
145
,
22
27
(
2014
).
17.
J. Y.
Mutus
,
L.
Livadaru
,
J. T.
Robinson
,
R.
Urban
,
M. H.
Salomons
,
M.
Cloutier
, and
R. A.
Wolkow
,
New J. Phys.
13
,
63011
(
2011
).
18.
J.-N.
Longchamp
,
T.
Latychevskaia
,
C.
Escher
, and
H.-W.
Fink
,
Appl. Phys. Lett.
101
,
113117
(
2012
).
19.
J.-N.
Longchamp
,
C.
Escher
,
T.
Latychevskaia
, and
H.-W.
Fink
,
Ultramicroscopy
145
,
80
84
(
2014
).
20.
R. R.
Nair
,
P.
Blake
,
J. R.
Blake
,
R.
Zan
,
S.
Anissimova
,
U.
Bangert
,
A. P.
Golovanov
,
S. V.
Morozov
,
A. K.
Geim
,
K. S.
Novoselov
, and
T.
Latychevskaia
,
Appl. Phys. Lett.
97
,
153102
(
2010
).
21.
D.
Ivanowski
, St.-Petersbourg. “Concerning the mosaic disease of the tobacco plant. Trans. J. Johnson,” in
Phytopathological Classics Number 7
. (American Phytopathological Society, St. Paul, MN, 1892) pp. 27–30.
22.
E. F.
Smith
,
J. Mycol.
7
,
382
(
1894
).
23.
M. W.
Beijerinck
, “Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves,” in
Phytopathological Classics
, No. 7 (American Phytopathological Society, St. Paul, MN.,
1898
).
24.
A.
Lustig
and
A. J.
Levine
,
J. Virol.
66
,
4629
(
1992
).
25.
K.
Namba
and
G.
Stubbs
,
Science
231
,
1401
(
1986
).
26.
K.
Namba
,
R.
Pattanayek
, and
G.
Stubbs
,
J. Mol. Biol.
208
,
307
(
1989
).
27.
T.-W.
Jeng
,
R. A.
Crowther
,
G.
Stubbs
, and
W.
Chiu
,
J. Mol. Biol.
205
,
251
(
1989
).
28.
C.
Sachse
,
J. Z.
Chen
,
P.-D.
Coureux
,
M. E.
Stroupe
,
M.
Fändrich
, and
N.
Grigorieff
,
J. Mol. Biol.
371
,
812
(
2007
).
29.
D.
Gabor
,
Nature
161
,
777
(
1948
).
30.
D.
Gabor
,
Noble Lecture in Physics 1971-1980
, (
World Scientific Publishing Co., Pte. Ltd.
,
Singapore
,
1992
).
31.
H.-W.
Fink
,
W.
Stocker
, and
H.
Schmid
,
Phys. Rev. Lett.
65
,
1204
(
1990
).
32.
H. W.
Fink
,
IBM J. Res. Dev.
30
,
460
(
1986
).
33.
H. W.
Fink
,
W.
Stocker
, and
H.
Schmid
,
J. Vac. Sci. Technol., B
8
,
1323
(
1990
).
34.
H. W.
Fink
,
Ultramicroscopy
50
,
101
(
1993
).
35.
H. J.
Kreuzer
,
K.
Nakamura
,
A.
Wierzbicki
,
H. W.
Fink
, and
H.
Schmid
,
Ultramicroscopy
45
,
381
(
1992
).
36.
H. J.
Kreuzer
,
Micron
26
,
503
(
1995
).
37.
T.
Latychevskaia
and
H.-W.
Fink
,
Phys. Rev. Lett.
98
,
233901
(
2007
).
38.
T.
Latychevskaia
and
H.-W.
Fink
,
Opt. Express
17
,
10697
(
2009
).
39.
T.
Latychevskaia
,
J.-N.
Longchamp
, and
H.-W.
Fink
,
Opt. Express
20
,
28871
(
2012
).
40.
T.
Latychevskaia
and
H.-W.
Fink
,
Appl. Opt.
54
,
2424
(
2015
).
41.
J.-N.
Longchamp
,
C.
Escher
, and
H.-W.
Fink
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
31
,
020605
(
2013
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.4931607 for a detailed description of the preparation and deposition method of TMV on graphene.
43.
E.
Abbe
,
J. R. Microsc. Soc.
1
,
388
(
1881
).
44.
E.
Abbe
,
J. R. Microsc. Soc.
3
,
790
(
1883
).
45.
J. Y.
Mutus
,
L.
Livadaru
,
R.
Urban
,
J.
Pitters
,
A. P.
Legg
,
M. H.
Salomons
,
M.
Cloutier
, and
R. A.
Wolkow
,
New J. Phys.
15
,
073038
(
2013
).
46.
J. Y.
Sgro
, in
Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses
, 1st ed., edited by
C. M.
Fauquet
,
M. A.
Mayo
,
J.
Maniloff
,
U.
Desselberger
, and
L. A.
Ball
(
Academic Press
,
London, New York
,
2005
).
47.
F.
Bawden
,
N. W.
Pirie
,
J. D.
Bernal
, and
I.
Fankuchen
,
Nature
138
,
1051
(
1936
).
48.
R. E.
Franklin
,
Biochim. Biophys. Acta
19
,
203
(
1956
).
49.
S. W.
Smith
,
The Scientist and Engineer's Guide to Digital Signal Processing
(
California Technical Publication
,
1997
).
50.
A.
Kendall
,
M.
McDonald
, and
G.
Stubbs
,
Virology
369
,
226
(
2007
).
51.
A. C. H.
Durham
,
J. T.
Finch
, and
A.
Klug
,
Nature
229
,
37
(
1971
).
52.
P. J.
Butler
,
Philos. Trans. R. Soc., B
354
,
537
(
1999
).
53.
J.-N.
Longchamp
,
T.
Latychevskaia
,
C.
Escher
, and
H.-W.
Fink
,
Phys. Rev. Lett.
110
,
255501
(
2013
).

Supplementary Material

You do not currently have access to this content.