High performance improvement (+88% in peak Gm and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at Ninv = 4.0 × 1012 cm−2 and +25% at Ninv = 8.0 × 1012 cm−2). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.

1.
J. L.
Hoyt
,
H. M.
Nayfeh
,
S.
Eguchi
,
I.
Aberg
,
G.
Xia
,
T.
Drake
,
E. A.
Fitzgerald
, and
D. A.
Antoniadis
, “
Strained silicon MOSFET technology
,”
IEEE Int. Electron Devices Meet., Tech. Dig.
2002
,
23
26
.
2.
K.
Mistry
,
M.
Armstrong
,
C.
Auth
,
S.
Cea
,
T.
Coan
,
T.
Ghani
,
T.
Hoffmann
,
A.
Murthy
,
J.
Sandford
,
R.
Shaheed
,
K.
Zawactzki
,
K.
Zhang
,
S.
Thompson
, and
M.
Bohr
, “
Delaying forever: Uniaxial strained silicon transistors in a 90 nm CMOS technology
,” in
Proceeding of the Symposium on VLSI Technology
(
2004
), pp.
50
51
.
3.
S. E.
Thompson
,
G.
Sun
,
Y. S.
Choi
, and
T.
Nishida
, “
Uniaxial process induced strained-Si: Extending the CMOS roadmap
,”
IEEE Trans. Electron Devices
53
,
1010
1020
(
2006
).
4.
N.
Xu
,
B.
Ho
,
M.
Choi
,
V.
Moroz
, and
T.-J.
King Liu
, “
Effectiveness of stressors in aggressively scaled FinFETs
,”
IEEE Trans. Electron Devices
59
,
1592
1598
(
2012
).
5.
A.
Khakifirooz
, “
Scalability of FDSOI technology to 14 nm
,” in
IEEE International SOI Conference
,
2012
.
6.
L.
Pelaz
,
L.
Marques
,
M.
Aboy
,
P.
Lopez
,
I.
Santos
, and
R.
Duffy
, “
Atomistic process modeling based on kinetic Monte Carlo and molecular dynamics for optimization of advanced devices
,”
IEEE Int. Electron Devices Meet., Tech. Dig.
2009
,
513
516
(
2009
).
7.
A.
Hokazono
,
H.
Itokawa
,
I.
Mizushima
,
S.
Kawanaka
,
S.
Inaba
, and
Y.
Toyoshima
, “
Steep channel profiles in n/pMOS controlled by boron-doped Si:C layers for continual bulk-CMOS scaling
,”
IEEE Int. Electron Device Meet., Tech. Dig.
2009
,
673
676
(
2009
).
8.
S. E.
Thompson
,
P. A.
Packan
, and
M. T.
Bohr
, “
Linear versus saturated drive current: Tradeoffs in super steep retrograde well engineering
,” in
Proceedings of the Symposium on VLSI Technology
(
1996
), pp.
154
155
.
9.
R. J.
Mears
,
N.
Xu
,
N.
Damrongplasit
,
H.
Takeuchi
,
R. J.
Stephenson
,
N. W.
Cody
,
A.
Yiptong
,
X.
Huang
,
M.
Hytha
, and
T.-J.
King Liu
, “
Simultaneous carrier transport enhancement and variability reduction in Si MOSFETs by insertion of partial monolayers of oxygen
,” in
IEEE Silicon Nanoelectronics Workshop
(
2012
), pp.
33
34
.
10.
N.
Xu
,
N.
Damrongplasit
,
H.
Takeuchi
,
R. J.
Stephenson
,
N. W.
Cody
,
X.
Huang
,
M.
Hytha
,
R. J.
Mears
, and
T.-J.
King Liu
, “
MOSFET performance and scalability enhancement by insertion of oxygen layers
,”
IEEE Int. Electron Devices Meet., Tech. Dig.
2012
,
127
130
(
2012
).
11.
N.
Damrongplasit
,
N.
Xu
,
H.
Takeuchi
,
R. J.
Stephenson
,
N. W.
Cody
,
A.
Yiptong
,
X.
Huang
,
M.
Hytha
,
R. J.
Mears
, and
T.-J.
King Liu
, “
Comparative study of uniform versus supersteep retrograde MOSFET channel doping and implications for 6-T SRAM yield
,”
IEEE Trans. Electron Devices
60
,
1790
1793
(
2013
).
12.
R. J.
Mears
,
J. A. C. S. F.
Yiptong
,
M.
Hytha
,
S. A.
Kreps
, and
I.
Dukovski
, “
Method for making a semiconductor device including a MOSFET having a band-engineered superlattice with a semiconductor cap layer providing a channel
,” U.S. patent 7,265,002 B2 (4 September
2007
).
13.
M.
Hytha
,
R. J.
Stephenson
, and
S. A.
Kreps
, “
Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
,” U.S. patent 7,153,763 B2 (26 December
2006
).
14.
K.
Nakajima
,
M.
Suzuki
,
K.
Kimura
,
M.
Yamamoto
,
A.
Teramoto
,
T.
Ohmi
, and
T.
Hattori
, “
Lattice distortion at SiO2/Si(001) interface studied with high-resolution Rutherford backscattering spectroscopy/channeling
,”
Jpn. J. Appl. Phys., Part 1
45
,
2467
2469
(
2006
).
15.
E.
Ungersboeck
,
S.
Dhar
,
G.
Karlowatz
,
V.
Sverdlov
,
H.
Kosina
, and
S.
Selberherr
, “
The effect of general strain on the band structure and electron mobility of silicon
,”
IEEE Trans. Electron Devices
54
,
2183
2190
(
2007
).
16.
D.
Esseni
and
A.
Abramo
, “
Modeling of electron mobility degradation by remote Coulomb scattering in ultrathin oxide MOSFETs
,”
IEEE Trans. Electron Devices
50
,
1665
1674
(
2003
).
17.
L. H.
Wong
,
C. C.
Wong
,
J. P.
Liu
,
D. K.
Sohn
,
L.
Chan
,
L. C.
Hsia
,
H.
Zang
,
Z. H.
Ni
, and
Z. X.
Shen
, “
Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe
,”
Jpn. J. Appl. Phys., Part 1
44
,
7922
7924
(
2005
).
18.
I. D.
Wolf
, “
Raman spectroscopy: About chips and stress
,”
Spectrosc. Eur.
15
,
6
13
(
2003
).
19.
S.
Takagi
,
A.
Toriumi
,
M.
Iwase
, and
H.
Tango
, “
On the universality of inversion layer mobility in Si MOSFET'S: Part I-Effects of substrate impurity concentration
,”
IEEE Trans. Electron Devices
41
,
2357
2362
(
1994
).
20.
I. M.
Tienda-Luna
,
F. G.
Ruiz
,
A.
Godoy
,
L.
Donetti
,
C.
Martinez-Blanque
, and
F.
Gamiz
, “
Effect of confined acoustic phonons on the electron mobility of rectangular nanowires
,”
Appl. Phys. Lett.
103
,
163107
(
2013
).
You do not currently have access to this content.