Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.

1.
R.
Hergt
,
S.
Dutz
,
R.
Müller
, and
M.
Zeisberger
, “
Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy
,”
J. Phys.: Condens. Matter
18
(
38
),
S2919
S2934
(
2006
).
2.
S.
Dutz
and
R.
Hergt
, “
Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy
,”
Int. J. Hyperthermia
29
(
8
),
790
800
(
2013
).
3.
S.
Laurent
,
D.
Forge
,
M.
Port
,
A.
Roch
,
C.
Robic
,
L. V.
Elst
, and
R. N.
Muller
, “
Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
,”
Chem. Rev.
110
(
4
),
2574
(
2010
).
4.
Q.
Pankhurst
,
J.
Connolly
,
S.
Jones
, and
J.
Dobson
, “
Applications of magnetic nanoparticles in biomedicine
,”
J. Phys. D: Appl. Phys.
36
(
13
),
R167
R181
(
2003
).
5.
B.
Gleich
and
J.
Weizenecker
, “
Tomographic imaging using the nonlinear response of magnetic particles
,”
Nature
435
(
7046
),
1214
1217
(
2005
).
6.
J.
Rahmer
,
A.
Halkola
,
B.
Gleich
,
I.
Schmale
, and
J.
Borgert
, “
First experimental evidence of the feasibility of multi-color magnetic particle imaging
,”
Phys. Med. Biol.
60
(
5
),
1775
1791
(
2015
).
7.
S.
Dutz
and
R.
Hergt
, “
Magnetic particle hyperthermia—A promising tumour therapy?
,”
Nanotechnology
25
(
45
),
452001
(
2014
).
8.
B.
Quesson
,
J. A.
de Zwart
, and
C. T.
Moonen
, “
Magnetic resonance temperature imaging for guidance of thermotherapy
,”
J. Magn. Reson. Imaging
12
(
4
),
525
533
(
2000
).
9.
R.
Epherre
,
E.
Duguet
,
S.
Mornet
,
E.
Pollert
,
S.
Louguet
,
S.
Lecommandoux
,
C.
Schatz
, and
G.
Goglio
, “
Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: About the suitability of an aqueous combustion synthesis route
,”
J. Mater. Chem.
21
(
12
),
4393
4401
(
2011
).
10.
M.
Barati
,
C.
Selomulya
,
K.
Sandeman
, and
K.
Suzuki
, “
Extraordinary induction heating effect near the first order Curie transition
,”
Appl. Phys. Lett.
105
,
162412
(
2014
).
11.
R.
Piñol
,
C. D. S.
Brites
,
R.
Bustamante
,
A.
Martínez
,
N. J. O.
Silva
,
J. L. L.
Murillo
,
R.
Cases
,
J.
Carrey
,
C.
Estepa
,
C.
Sosa
,
F.
Palacio
,
L. D.
Carlos
, and
A.
Millán
, “
Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties
,”
ACS Nano
9
(
3
),
3134
3142
(
2015
).
12.
A.
Hannecart
,
D.
Stanicki
,
L.
Vander Elst
,
R. N.
Muller
,
S.
Lecommandoux
,
J.
Thevenot
,
C.
Bonduelle
,
A.
Trotier
,
P.
Massot
,
S.
Miraux
,
O.
Sandre
, and
S.
Laurent
, “
Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI
,”
Nanoscale
7
(
8
),
3754
3767
(
2015
).
13.
J. B.
Weaver
,
A. M.
Rauwerdink
, and
E. W.
Hansen
, “
Magnetic nanoparticle temperature estimation
,”
Med. Phys.
36
(
5
),
1822
1829
(
2009
).
14.
M.
Ma
,
Y.
Wu
,
J.
Zhou
,
Y.
Sun
,
Y.
Zhang
, and
N.
Gu
, “
Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field
,”
J. Magn. Magn. Mater.
268
,
33
39
(
2004
).
15.
J.-P.
Fortin
,
C.
Wilhelm
,
J.
Servais
,
C.
Mánager
,
J.-C.
Bacri
, and
F.
Gazeau
, “
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia
,”
J. Am. Chem. Soc.
129
(
9
),
2628
2635
(
2007
).
16.
E.
Kita
,
S.
Hashimoto
,
T.
Kayano
,
M.
Minagawa
,
H.
Yanagihara
,
M.
Kishimoto
,
K.
Yamada
,
T.
Oda
,
N.
Ohkohchi
,
T.
Takagi
,
T.
Kanamori
,
Y.
Ikehata
, and
I.
Nagano
, “
Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia
,”
J. Appl. Phys.
107
(
9
),
09B321
(
2010
).
17.
S.
Huang
,
S.-Y.
Wang
,
A.
Gupta
,
D.-A.
Borca-Tasciuc
, and
S. J.
Salon
, “
On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field
,”
Meas. Sci. Technol.
23
(
3
),
035701
(
2012
).
18.
S.-Y.
Wang
,
S.
Huang
, and
D.-A.
Borca-Tasciuc
, “
Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field
,”
IEEE Trans. Magn.
49
(
1
),
255
262
(
2013
).
19.
V.
Connord
,
B.
Mehdaoui
,
R.
Tan
,
J.
Carrey
, and
M.
Respaud
, “
An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications
,”
Rev. Sci. Instrum.
85
(
9
),
093904
(
2014
).
20.
E.
Garaio
,
J.
Collantes
,
F.
Plazaola
,
J.
Garcia
, and
I.
Castellanos-Rubio
, “
A multifrequency electromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments
,”
Meas. Sci. Technol.
25
,
115702
(
2014
).
21.
R.
Regmi
,
A.
Naik
,
J. S.
Thakur
,
P. P.
Vaishnava
, and
G.
Lawes
, “
Temperature dependent dissipation in magnetic nanoparticles
,”
J. Appl. Phys.
115
(
17
),
17B301
(
2014
).
22.
E.
Garaio
,
O.
Sandre
,
J.-M.
Collantes
,
J. A.
Garcia
,
S.
Mornet
, and
F.
Plazaola
, “
Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)
,”
Nanotechnology
26
(
1
),
015704
(
2015
).
23.
E.
Garaio
,
J.
Collantes
,
J.
Garcia
,
F.
Plazaola
,
S.
Mornet
,
F.
Couillaud
, and
O.
Sandre
, “
A wide-frequency range ac magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia
,”
J. Magn. Magn. Mater.
368
,
432
437
(
2014
).
24.
R.
Massart
,
E.
Dubois
,
V.
Cabuil
, and
E.
Hasmonay
, “
Preparation and properties of monodisperse magnetic fluids
,”
J. Magn. Magn. Mater.
149
,
1
5
(
1995
).
25.
G.
Salas
,
J.
Camarero
,
D.
Cabrera
,
H.
Takacs
,
M.
Varela
,
R.
Ludwig
,
H.
Dhring
,
I.
Hilger
,
R.
Miranda
,
M.
del Puerto Morales
, and
F. J.
Teran
, “Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles,”
J. Phys. Chemi. C
118
(
34
),
19985
19994
(
2014
).
26.
M.
Beković
,
M.
Trlep
,
M.
Jesenik
,
V.
Goričan
, and
A.
Hamler
, “
An experimental study of magnetic-field and temperature dependence on magnetic fluid's heating power
,”
J. Magn. Magn. Mater.
331
,
264
268
(
2013
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4931457 for the measured AC hysteresis cycles.

Supplementary Material

You do not currently have access to this content.