Thermal cloaking, as an ultimate thermal “illusion” phenomenon, is the result of advanced heat manipulation with thermal metamaterials—heat can be guided around a hidden object smoothly without disturbing the ambient thermal environment. However, all previous thermal metamaterial cloaks were passive devices, lacking the functionality of switching on/off and the flexibility of changing geometries. In this letter, we report an active thermal cloaking device that is controllable. Different from previous thermal cloaking approaches, this thermal cloak adopts active thermoelectric components to “pump” heat from one side to the other side of the hidden object, in a process controlled by input electric voltages. Our work not only incorporates active components in thermal cloaking but also provides controllable functionality in thermal metamaterials that can be used to construct more flexible thermal devices.

1.
A.
Alù
and
N.
Engheta
,
Phys. Rev. E
72
(
1
),
016623
(
2005
).
2.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
,
Science
314
(
5801
),
977
(
2006
).
3.
R.
Liu
,
C.
Ji
,
J. J.
Mock
,
J. Y.
Chin
,
T. J.
Cui
, and
D. R.
Smith
,
Science
323
(
5912
),
366
(
2009
).
4.
J.
Valentine
,
J.
Li
,
T.
Zentgraf
,
G.
Bartal
, and
X.
Zhang
,
Nat. Mater.
8
(
7
),
568
(
2009
).
5.
L. H.
Gabrielli
,
J.
Cardenas
,
C. B.
Poitras
, and
M.
Lipson
,
Nat. Photonics
3
(
8
),
461
(
2009
).
6.
F. G.
Vasquez
,
G. W.
Milton
, and
D.
Onofrei
,
Phys. Rev. Lett.
103
(
7
),
073901
(
2009
).
7.
B.
Edwards
,
A.
Alù
,
M. G.
Silveirinha
, and
N.
Engheta
,
Phys. Rev. Lett.
103
(
15
),
153901
(
2009
).
8.
H. F.
Ma
and
T. J.
Cui
,
Nat. Commun.
1
,
21
(
2010
).
9.
T.
Ergin
,
N.
Stenger
,
P.
Brenner
,
J. B.
Pendry
, and
M.
Wegener
,
Science
328
(
5976
),
337
(
2010
).
10.
B.
Zhang
,
Y.
Luo
,
X.
Liu
, and
G.
Barbastathis
,
Phys. Rev. Lett.
106
(
3
),
033901
(
2011
).
11.
X.
Chen
,
Yu.
Luo
,
J.
Zhang
,
K.
Jiang
,
J. B.
Pendry
, and
S.
Zhang
,
Nat. Commun.
2
,
176
(
2011
).
12.
S.
Narayana
and
Y.
Sato
,
Adv. Mater.
24
(
1
),
71
(
2012
).
13.
F.
Gömöry
,
M.
Solovyov
,
J.
Šouc
,
C.
Navau
,
J.
Prat-Camps
, and
A.
Sanchez
,
Science
335
(
6075
),
1466
(
2012
).
14.
Q.
Ma
,
Z. L.
Mei
,
S. K.
Zhu
,
T. Yu.
Jin
, and
T. J.
Cui
,
Phys. Rev. Lett.
111
(
17
),
173901
(
2013
).
15.
H.
Chen
,
B.
Zheng
,
L.
Shen
,
H.
Wang
,
X.
Zhang
,
N. I.
Zheludev
, and
B.
Zhang
,
Nat. Commun.
4
,
2652
(
2013
).
16.
G. W.
Milton
,
M.
Briane
, and
J. R.
Willis
,
New J. Phys.
8
(
10
),
248
(
2006
).
17.
H.
Chen
and
C. T.
Chan
,
Appl. Phys. Lett.
91
(
18
),
183518
(
2007
).
18.
F. G.
Vasquez
,
G. W.
Milton
, and
D.
Onofrei
,
Wave Motion
48
(
6
),
515
(
2011
).
19.
S.
Zhang
,
C.
Xia
, and
N.
Fang
,
Phys. Rev. Lett.
106
(
2
),
024301
(
2011
).
20.
S.
Guenneau
,
C.
Amra
, and
D.
Veynante
,
Opt. Express
20
(
7
),
8207
(
2012
).
21.
S.
Narayana
and
Y.
Sato
,
Phys. Rev. Lett.
108
(
21
),
214303
(
2012
).
22.
E. M.
Dede
,
T.
Nomura
,
P.
Schmalenberg
, and
J. S.
Lee
,
Appl. Phys. Lett.
103
(
6
),
063501
(
2013
).
23.
Y.
Ma
,
Lu.
Lan
,
W.
Jiang
,
F.
Sun
, and
S.
He
,
NPG Asia Mater.
5
,
e73
(
2013
).
24.
R.
Schittny
,
M.
Kadic
,
S.
Guenneau
, and
M.
Wegener
,
Phys. Rev. Lett.
110
(
19
),
195901
(
2013
).
25.
T.
Han
,
X.
Bai
,
D.
Gao
,
J. T. L.
Thong
,
B.
Li
, and
C.-W.
Qiu
,
Phys. Rev. Lett.
112
(
5
),
054302
(
2014
).
26.
H.
Xu
,
X.
Shi
,
F.
Gao
,
H.
Sun
, and
B.
Zhang
,
Phys. Rev. Lett.
112
(
5
),
054301
(
2014
).
27.
Y.
Zhang
,
H.
Xu
, and
B.
Zhang
,
AIP Adv.
5
(
5
),
053402
(
2015
).
28.
U.
Leonhardt
,
Science
312
(
5781
),
1777
(
2006
).
29.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
(
5781
),
1780
(
2006
).
30.
B. J.
Huang
,
C. J.
Chin
, and
C. L.
Duang
,
Int. J. Refrig.
23
(
3
),
208
(
2000
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4930989 for the entire dynamic switching process.

Supplementary Material

You do not currently have access to this content.