The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

1.
X.
Qi
and
S.
Zhang
,
Rev. Mod. Phys.
83
,
1057
(
2011
).
2.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
(
2010
).
4.
C. Z.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L.-L.
Wang
 et al.,
Science
340
,
167
(
2013
).
5.
A.
Cook
and
M.
Franz
,
Phys. Rev. B
84
,
201105
(
2011
).
6.
L.
Fu
and
C. L.
Kane
,
Phys. Rev. Lett.
100
,
96407
(
2008
).
7.
C.
Hwang
,
D. A.
Siegel
,
S.
Mo
,
W.
Regan
,
A.
Ismach
,
Y.
Zhang
,
A.
Zettl
, and
A.
Lanzara
,
Sci. Rep.
2
,
590
(
2012
).
8.
K.
Kuroda
,
M.
Arita
,
K.
Miyamoto
,
M.
Ye
,
J.
Jiang
,
A.
Kimura
,
E. E.
Krasovskii
,
E. E.
Chulkov
,
H.
Iwasawa
,
T.
Okuda
 et al.,
Phys. Rev. Lett.
105
,
076802
(
2010
).
9.
D.
Qu
,
Y. S.
Hor
,
J.
Xiong
,
R. J.
Cava
, and
N. P.
Ong
,
Science
329
,
821
(
2010
).
10.
T.
Zhang
,
P.
Cheng
,
X.
Chen
,
J.-F.
Jia
,
X.
Ma
,
K.
He
,
L.
Wang
,
H.
Zhang
,
X.
Dai
,
Z.
Fang
 et al.,
Phys. Rev. Lett.
103
,
266803
(
2009
).
11.
D.
Hsieh
,
D.
Qian
,
L.
Wray
,
Y.
Xia
,
Y. S.
Hor
,
R. J.
Cava
, and
M. Z.
Hasan
,
Nature
452
,
970
(
2008
).
12.
H.
Peng
,
K.
Lai
,
D.
Kong
,
S.
Meister
,
Y.
Chen
,
X.
Qi
,
S.
Zhang
,
Z.
Shen
, and
Y.
Cui
,
Nat. Mater.
9
,
225
(
2010
).
13.
J. H.
Bardarson
,
P. W.
Brouwer
, and
J. E.
Moore
,
Phys. Rev. Lett.
105
,
156803
(
2010
).
14.
G.
Rosenberg
,
H.-M.
Guo
, and
M.
Franz
,
Phys. Rev. B
82
,
041104
(
2010
).
15.
Y.
Zhang
and
A.
Vishwanath
,
Phys. Rev. Lett.
105
,
206601
(
2010
).
16.
K.
Chang
and
W.
Lou
,
Phys. Rev. Lett.
106
,
206802
(
2011
).
17.
W.
Lou
,
F.
Cheng
, and
J.
Li
,
J. Appl. Phys.
110
,
093714
(
2011
).
18.
F.
Xiu
,
L.
He
,
Y.
Wang
,
L.
Cheng
,
L.-T.
Chang
,
M.
Lang
,
G.
Huang
,
X.
Kou
,
Y.
Zhou
,
X.
Jiang
 et al.,
Nat. Nanotechnol.
6
,
216
(
2011
).
19.
L. A.
Jauregui
,
M. T.
Pettes
,
L. P.
Rokhinson
,
L.
Shi
, and
Y. P.
Chen
,
Sci. Rep.
5
,
8452
(
2015
).
20.
S.
Steiger
,
M.
Povolotskyi
,
H. H.
Park
,
T.
Kubis
, and
G.
Klimeck
,
IEEE Trans. Nanotechnol.
10
,
1464
(
2011
).
21.
R.
Lake
,
G.
Klimeck
,
R. C.
Bowen
, and
D.
Jovanovic
,
J. Appl. Phys.
81
,
7845
(
1997
).
22.
S.
Lee
and
P.
Allmen
,
Appl. Phys. Lett.
88
,
022107
(
2006
).
23.
Y. L.
Chen
,
J. G.
Analytis
,
J.-H.
Chu
,
Z. K.
Liu
,
S.-K.
Mo
,
X. L.
Qi
,
H. J.
Zhang
,
D. H.
Lu
,
X.
Dai
,
Z.
Fang
 et al.,
Science
325
,
5937
(
2009
).
24.
M.
Graf
and
P.
Vogl
,
Phys. Rev. B
51
,
4940
(
1995
).
You do not currently have access to this content.