The plasmonic gain of a top-pumped active symmetric metal slab waveguide is investigated theoretically and experimentally. The structure consists of a thin Ag film cladded above and below by gain media (IR140-doped poly (methyl methacrylate)), and operating with long-range surface plasmon polaritons (LRSPPs) at near-infrared wavelengths. We consider the spatial distribution of the pump intensity and the position dependence of the dipole lifetime within the claddings when computing the LRSPP gain. We find that the bottom cladding provides significant gain to the LRSPP, despite the low pump transmittance through the Ag film, as long as the pump intensity is strong enough to saturate the gain material (∼4 MW/cm2). In this situation, the LRSPP gain is doubled compared to the case where the top cladding only is active. The LRSPP gain was measured in a fabricated structure using the variable stripe length method, yielding gmod = 16.7 cm−1 at a pump intensity of ∼4 MW/cm2. The measured LRSPP gain agrees very well with the computed value, implying that the bottom cladding provides significant gain to the mode. Active plasmonic devices based on the symmetric dielectric-metal-dielectric structure can be significantly more efficient by using gain layers as both the top and bottom claddings.

1.
H.
Raether
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(
Springer
,
Berlin
,
1988
).
2.
D. J.
Bergman
and
M. I.
Stockman
,
Phys. Rev. Lett.
90
,
027402
(
2003
).
3.
P.
Berini
and
I.
De Leon
,
Nat. Photonics
6
,
16
(
2011
).
4.
J.
Seidel
,
S.
Grafström
, and
L.
Eng
,
Phys. Rev. Lett.
94
,
177401
(
2005
).
5.
M. A.
Noginov
,
G.
Zhu
,
M.
Mayy
,
B. A.
Ritzo
,
N.
Noginova
, and
V. A.
Podolskiy
,
Phys. Rev. Lett.
101
,
226806
(
2008
).
6.
I.
De Leon
and
P.
Berini
,
Nat. Photonics
4
,
382
(
2010
).
7.
M. C.
Gather
,
K.
Meerholz
,
N.
Danz
, and
K.
Leosson
,
Nat. Photonics
4
,
457
(
2010
).
8.
S.
Kéna-Cohen
,
P. N.
Stavrinou
,
D. D. C.
Bradley
, and
S. A.
Maier
,
Nano Lett.
13
,
1323
(
2013
).
9.
R. F.
Oulton
,
V. J.
Sorger
,
T.
Zentgraf
,
R.-M.
Ma
,
C.
Gladden
,
L.
Dai
,
G.
Bartal
, and
X.
Zhang
,
Nature
461
,
629
(
2009
).
10.
I.
De Leon
and
P.
Berini
,
Opt. Express
17
,
20191
(
2009
).
11.
P.
Sperber
,
W.
Spangler
,
B.
Meier
, and
A.
Penzkofer
,
Opt. Quantum Electron.
20
,
395
(
1988
).
12.
E. K.
Keshmarzi
,
R. N.
Tait
, and
P.
Berini
,
Opt. Express
22
,
12452
(
2014
).
13.
J.
Mohanty
,
D. K.
Palit
, and
J. P.
Mittal
,
Proc. Ind. Nat. Sci. Acad.
66
,
303
(
2000
).
14.
M. A.
Noginov
,
H.
Li
,
Y. A.
Barnakov
,
D.
Dryden
,
G.
Nataraj
,
G.
Zhu
,
C. E.
Bonner
,
M.
Mayy
,
Z.
Jacob
, and
E. E.
Narimanov
,
Opt. Lett.
35
,
1863
(
2010
).
15.
I.
De Leon
and
P.
Berini
,
Phys. Rev. B
83
,
081414
(
2011
).
16.
N.
Sultanova
,
S.
Kasarova
, and
I.
Nikolov
,
Acta Phys. Pol. A
116
,
585
(
2009
).
17.
P.
Fabeni
,
R.
Linari
,
G. P.
Pazzi
, and
A.
Ranfagni
,
Appl. Opt.
26
,
5317
(
1987
).
18.
L.
Dal Negro
,
P.
Bettotti
,
M.
Cazzanelli
,
D.
Pacifici
, and
L.
Pavesi
,
Opt. Commun.
229
,
337
(
2004
).
19.
See supplementary material at http://dx.doi.org/10.1063/1.4931699 for details about the position-dependent lifetime calculation.

Supplementary Material

You do not currently have access to this content.