At present, the concept of artificial muscle twisted by polymers or fibers has become a hot issue in the field of intelligent material research according to its distinguishing advantages, e.g., high energy density, large-stroke, non-hysteresis, and inexpensive. The axial thermal expansion coefficient is an important parameter which can affect its demanding applications. In this letter, a device with high accuracy capacitive sensor is constructed to measure the axial thermal expansion coefficient of the twisted carbon fibers and yarns of Kevlar, and a theoretical model based on the thermal elasticity and the geometrical features of the twisted structure are also presented to predict the axial expansion coefficient. It is found that the calculated results take good agreements with the experimental data. According to the present experiment and analyses, a method to control the axial thermal expansion coefficient of artificial muscle is proposed. Moreover, the mechanism of this kind of thermally driven artificial muscle is discussed.

1.
C. S.
Haines
,
M. D.
Lima
,
N.
Li
,
G. M.
Spinks
,
J.
Foroughi
,
J. D.
Madden
,
S. H.
Kim
,
S.
Fang
,
M.
Jung de Andrade
,
F.
Goktepe
,
O.
Goktepe
,
S. M.
Mirvakili
,
S.
Naficy
,
X.
Lepro
,
J.
Oh
,
M. E.
Kozlov
,
S. J.
Kim
,
X.
Xu
,
B. J.
Swedlove
,
G. G.
Wallace
, and
R. H.
Baughman
,
Science
343
,
868
(
2014
).
2.
J.
Foroughi
,
G. M.
Spinks
,
G. G.
Wallace
,
J.
Oh
,
M. E.
Kozlov
,
S.
Fang
,
T.
Mirfakhrai
,
J. D. W.
Madden
,
M. K.
Shin
, and
S. J.
Kim
,
Science
334
,
494
(
2011
).
3.
M. D.
Lima
,
N.
Li
,
M.
Jung de Andrade
,
S.
Fang
,
J.
Oh
,
G. M.
Spinks
,
M. E.
Kozlov
,
C. S.
Haines
,
D.
Suh
,
J.
Foroughi
,
S. J.
Kim
,
Y.
Chen
,
T.
Ware
,
M. K.
Shin
,
L. D.
Machado
,
A. F.
Fonseca
,
J. D.
Madden
,
W. E.
Voit
,
D. S.
Galvao
, and
R. H.
Baughman
,
Science
338
,
928
(
2012
).
4.
M. D.
Lima
,
M. W.
Hussain
,
G. M.
Spinks
,
S.
Naficy
,
D.
Hagenasr
,
J. S.
Bykova
,
D.
Tolly
, and
R. H.
Baughman
,
Small
11
,
3113
(
2015
).
5.
J.
Madden
and
S.
Kianzad
,
IEEE Pulse
6
(
1
),
32
(
2015
).
6.
J.
Yuan
and
P.
Poulin
,
Science
343
,
845
(
2014
).
7.
Y.
Shang
,
Y.
Li
,
X.
He
,
S.
Du
,
L.
Zhang
,
E.
Shi
,
S.
Wu
,
Z.
Li
,
P.
Li
, and
J.
Wei
,
ACS Nano
7
(
2
),
1446
(
2013
).
8.
W.
Guo
,
C.
Liu
,
F.
Zhao
,
X.
Sun
,
Z.
Yang
,
T.
Chen
,
X.
Chen
,
L.
Qiu
,
X.
Hu
, and
H.
Peng
,
Adv. Mater.
24
,
5379
(
2012
).
9.
S. M.
Mirvakili
,
A.
Pazukha
,
W.
Sikkema
,
C. W.
Sinclair
,
G. M.
Spinks
,
R. H.
Baughman
, and
J. D. W.
Madden
,
Adv. Funct. Mater.
23
,
4311
(
2013
).
10.
P.
Chen
,
Y.
Xu
,
S.
He
,
X.
Sun
,
W.
Guo
,
Z.
Zhang
,
L.
Qiu
,
J.
Li
,
D.
Chen
, and
H.
Peng
, “
Biologically inspired, sophisticated motions from helically assembled, conducting fibers
,”
Adv. Mater.
27
,
1042
(
2015
).
11.
F.
Meng
,
X.
Zhang
,
R.
Li
,
J.
Zhao
,
X.
Xuan
,
X.
Wang
,
J.
Zou
, and
Q.
Li
,
Adv. Mater.
26
,
2480
(
2014
).
12.
S.
Wu
,
X.
Nie
,
M. C.
Hudspeth
,
W. W.
Chen
,
T. W.
Chou
,
D. S.
Lashmore
,
M. W.
Schauer
,
E.
Towle
, and
J.
Rioux
,
Appl. Phys. Lett.
100
,
201908
(
2012
).
13.
S.
Sharafi
and
G.
Li
,
Soft Matter
11
,
3833
(
2015
).
14.
S. P.
Timoshenko
and
J. N.
Goodier
,
Theory of Elasticity
(
McGraw-Hill
,
New York
,
1951
),
p. 406
.
15.
G.
Wagoner
,
R. E.
Smith
, and
R.
Bacon
, paper presented at the
Extended Abstracts of 18th Biennial Carbon Conference
, Worcester Polytechnic Institute, Worcester, MA,
1987
.
16.
H. H.
Yang
,
Kevlar Aramid Fiber
(
John Wiley & Sons
,
West Sussex
,
1993
).
You do not currently have access to this content.