Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
2.
C.
Ataca
,
H.
Sahin
,
E.
Aktürk
, and
S.
Ciraci
,
J. Phys. Chem. C
115
,
3934
(
2011
).
3.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
4.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
(
2010
).
5.
K. F.
Mak
,
C.
Lee
,
J. C.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
6.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J. C.
Hone
,
Science
321
,
385
(
2008
).
7.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
,
ACS Nano
5
,
9703
(
2011
).
8.
X.
Liu
,
G.
Zhang
,
Q. X.
Pei
, and
Y. W.
Zhang
,
Appl. Phys. Lett.
103
,
133113
(
2013
).
9.
Y.
Li
,
H.
Wang
,
L.
Xie
,
Y.
Liang
,
G.
Hong
, and
H.
Dai
,
J. Am. Chem. Soc.
133
,
7296
(
2011
).
10.
S.
Lebègue
and
O.
Eriksson
,
Phys. Rev. B
79
,
115409
(
2009
).
11.
T.
Cao
,
G.
Wang
,
W.
Han
,
H.
Ye
,
C.
Zhu
,
J.
Shi
,
Q.
Niu
,
P.
Tan
,
E.
Wang
,
B.
Liu
, and
J.
Feng
,
Nat. Commun.
3
,
887
(
2012
).
12.
W.
Yao
,
D.
Xiao
, and
Q.
Niu
,
Phys. Rev. B
77
,
235406
(
2008
).
13.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
,
Nat. Nanotechnol.
7
,
490
(
2012
).
14.
Y.-H.
Lee
,
X.-Q.
Zhang
,
W.
Zhang
,
M.-T.
Chang
,
C.-T.
Lin
,
K.-D.
Chang
,
Y.-C.
Yu
,
J. T.-W.
Wang
,
C.-S.
Chang
,
L.-J.
Li
, and
T.-W.
Lin
,
Adv. Mater.
24
,
2320
(
2012
).
15.
A. M.
van der Zande
,
P. Y.
Huang
,
D. A.
Chenet
,
T. C.
Berkelbach
,
Y.
You
,
G.-H.
Lee
,
T. F.
Heinz
,
D. R.
Reichman
,
D. A.
Muller
, and
J. C.
Hone
,
Nat. Mater.
12
,
554
(
2013
).
16.
A. W.
Tsen
,
L.
Brown
,
M. P.
Levendorf
,
F.
Ghahari
,
P. Y.
Huang
,
R. W.
Havener
,
C. S.
Ruiz-Vargas
,
D. A.
Muller
,
P.
Kim
, and
J.
Park
,
Science
336
,
1143
(
2012
).
17.
R.
Grantab
,
V. B.
Shenoy
, and
R. S.
Ruoff
,
Science
330
,
946
(
2010
).
18.
P. Y.
Huang
,
C. S.
Ruiz-Vargas
,
A. M.
van der Zande
,
W. S.
Whitney
,
M. P.
Levendorf
,
J. W.
Kevek
,
S.
Garg
,
J. S.
Alden
,
C. J.
Hustedt
,
Y.
Zhu
,
J.
Park
,
P. L.
McEuen
, and
D. A.
Muller
,
Nature
469
,
389
(
2011
).
19.
G.-H.
Lee
,
R. C.
Cooper
,
S. J.
An
,
S.
Lee
,
A. M.
van der Zande
,
N.
Petrone
,
A. G.
Hammerberg
,
C.
Lee
,
B.
Crawford
,
W.
Oliver
,
J. W.
Kysar
, and
J. C.
Hone
,
Science
340
,
1073
(
2013
).
20.
S.
Najmaei
,
Z.
Liu
,
W.
Zhou
,
X.
Zou
,
G.
Shi
,
S.
Lei
,
B. I.
Yakobson
,
J.-C.
Idrobo
,
P. M.
Ajayan
, and
J.
Lou
,
Nat. Mater.
12
,
754
(
2013
).
21.
W.
Regan
,
N.
Alem
,
B.
Alemán
,
B.
Geng
,
C.
Girit
,
L.
Maserati
,
F.
Wang
,
M.
Crommie
, and
A.
Zettl
,
Appl. Phys. Lett.
96
,
113102
(
2010
).
22.
J. D.
Caldwell
,
T. J.
Anderson
,
J. C.
Culbertson
,
G. G.
Jernigan
,
K. D.
Hobart
,
F. J.
Kub
,
M. J.
Tadjer
,
J. L.
Tedesco
,
J. K.
Hite
,
M. A.
Mastro
,
R. L.
Myers-Ward
,
C. R.
Eddy
,
P. M.
Campbell
, and
D. K.
Gaskill
,
ACS Nano
4
,
1108
(
2010
).
23.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J.-H.
Ahn
,
P.
Kim
,
J.-Y.
Choi
, and
B. H.
Hong
,
Nature
457
,
706
(
2009
).
24.
D. L.
Duong
,
G. H.
Han
,
S. M.
Lee
,
F.
Gunes
,
E. S.
Kim
,
S. T.
Kim
,
H.
Kim
,
Q. H.
Ta
,
K. P.
So
,
S. J.
Yoon
,
S. J.
Chae
,
Y. W.
Jo
,
M. H.
Park
,
S. H.
Chae
,
S. C.
Lim
,
J. Y.
Choi
, and
Y. H.
Lee
,
Nature
490
,
235
(
2012
).
25.
X.
Yin
,
Z.
Ye
,
D. A.
Chenet
,
Y.
Ye
,
K.
O'Brien
,
J. C.
Hone
, and
X.
Zhang
,
Science
344
,
488
(
2014
).
26.
M. A.
van der Veen
,
F.
Vermoortele
,
D. E.
De Vos
, and
T.
Verbiest
,
Anal. Chem.
84
,
6378
(
2012
).
27.
N.
Kumar
,
S.
Najmaei
,
Q.
Cui
,
F.
Ceballos
,
P. M.
Ajayan
,
J.
Lou
, and
H.
Zhao
,
Phys. Rev. B
87
,
161403
(
2013
).
28.
Y.
Li
,
Y.
Rao
,
K. F.
Mak
,
Y.
You
,
S.
Wang
,
C. R.
Dean
, and
T. F.
Heinz
,
Nano Lett.
13
,
3329
(
2013
).
29.
A.
Savoia
,
D.
Paparo
,
P.
Perna
,
Z.
Ristic
,
M.
Salluzzo
,
F.
Miletto Granozio
,
U.
Scotti di Uccio
,
C.
Richter
,
S.
Thiel
,
J.
Mannhart
, and
L.
Marrucci
,
Phys. Rev. B
80
,
075110
(
2009
).
30.
Z.
Liu
,
M.
Amani
,
S.
Najmaei
,
Q.
Xu
,
X.
Zou
,
W.
Zhou
,
T.
Yu
,
C.
Qiu
,
A. G.
Birdwell
,
F. J.
Crowne
,
R.
Vajtai
,
B. I.
Yakobson
,
Z.
Xia
,
M.
Dubey
,
P. M.
Ajayan
, and
J.
Lou
,
Nat. Commun.
5
,
5246
(
2014
).
31.
T. F.
Heinz
,
M. M. T.
Loy
, and
W. A.
Thompson
,
Phys. Rev. Lett.
54
,
63
(
1985
).
You do not currently have access to this content.