We report the experimental realization of perfect sound absorption by sub-wavelength monopole and dipole resonators that exhibit degenerate resonant frequencies. This is achieved through the destructive interference of two resonators' transmission responses, while the matching of their averaged impedances to that of air implies no backscattering, thereby leading to total absorption. Two examples, both using decorated membrane resonators (DMRs) as the basic units, are presented. The first is a flat panel comprising a DMR and a pair of coupled DMRs, while the second one is a ventilated short tube containing a DMR in conjunction with a sidewall DMR backed by a cavity. In both examples, near perfect absorption, up to 99.7%, has been observed with the airborne wavelength up to 1.2 m, which is at least an order of magnitude larger than the composite absorber. Excellent agreement between theory and experiment is obtained.

1.
L.
Landau
and
E.
Lifshitz
,
Theory of Elasticity
(
Pergamon Press
,
1970
), Chap. 5, p.
153
.
2.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N.
Chan
, and
P.
Sheng
, “
Membrane-type acoustic metamaterial with negative dynamic mass
,”
Phys. Rev. Lett.
101
,
204301
(
2008
).
3.
S. H.
Lee
,
C. M.
Park
,
Y. M.
Seo
, and
C. K.
Kim
, “
Reversed Doppler effect in double negative metamaterials
,”
Phys. Rev. B
81
,
241102
(
2010
).
4.
C. M.
Park
,
J. J.
Park
,
S. H.
Lee
,
Y. M.
Seo
,
C. K.
Kim
, and
S. H.
Lee
, “
Amplification of acoustic evanescent waves using metamaterial slabs
,”
Phys. Rev. Lett.
107
,
194301
(
2011
).
5.
J. J.
Park
,
K.
Lee
,
O. B.
Wright
,
M. K.
Jung
, and
S. H.
Lee
, “
Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials
,”
Phys. Rev. Lett.
110
,
244302
(
2013
).
6.
M.
Yang
,
G.
Ma
,
Z.
Yang
, and
P.
Sheng
, “
Coupled membranes with doubly negative mass density and bulk modulus
,”
Phys. Rev. Lett.
110
,
134301
(
2013
).
7.
G.
Ma
,
M.
Yang
,
Z.
Yang
, and
P.
Sheng
, “
Low-frequency narrow-band acoustic filter with large orifice
,”
Appl. Phys. Lett.
103
,
011903
(
2013
).
8.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
, “
Dark acoustic metamaterials as super absorbers for low-frequency sound
,”
Nat. Commun.
3
,
756
(
2012
).
9.
M.
Yang
,
Y.
Li
,
C.
Meng
,
C.
Fu
,
J.
Mei
,
Z.
Yang
, and
P.
Sheng
, “
Sound absorption by subwavelength membrane structures: A generalized perspective
,”
C. R. Mecanique
(published online), preprint arXiv:1502.06358 (
2015
).
10.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
, “
Acoustic metasurface with hybrid resonances
,”
Nat. Mater.
13
,
873
878
(
2014
).
11.
Y.
Chong
,
L.
Ge
,
H.
Cao
, and
A. D.
Stone
, “
Coherent perfect absorbers: Time-reversed lasers
,”
Phys. Rev. Lett.
105
,
053901
(
2010
).
12.
W.
Wan
,
Y.
Chong
,
L.
Ge
,
H.
Noh
,
A. D.
Stone
, and
H.
Cao
, “
Time-reversed lasing and interferometric control of absorption
,”
Science
331
,
889
892
(
2011
).
13.
H.
Noh
,
Y.
Chong
,
A. D.
Stone
, and
H.
Cao
, “
Perfect coupling of light to surface plasmons by coherent absorption
,”
Phys. Rev. Lett.
108
,
186805
(
2012
).
14.
G.
Nie
,
Q.
Shi
,
Z.
Zhu
, and
J.
Shi
, “
Selective coherent perfect absorption in metamaterials
,”
Appl. Phys. Lett.
105
,
201909
(
2014
).
15.
S.
Li
,
J.
Luo
,
S.
Anwar
,
S.
Li
,
W.
Lu
,
Z. H.
Hang
,
Y.
Lai
,
B.
Hou
,
M.
Shen
, and
C.
Wang
, “
An equivalent realization of coherent perfect absorption under single beam illumination
,”
Sci. Rep.
4
,
7369
(
2014
).
16.
J. R.
Piper
and
S.
Fan
, “
Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance
,”
ACS Photonics
1
,
347
353
(
2014
).
17.
P.
Wei
,
C.
Croënne
,
S. T.
Chu
, and
J.
Li
, “
Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves
,”
Appl. Phys. Lett.
104
,
121902
(
2014
).
18.
J.
Song
,
P.
Bai
,
Z.
Hang
, and
Y.
Lai
, “
Acoustic coherent perfect absorbers
,”
New J. Phys.
16
,
033026
(
2014
).
19.
X.
Cai
,
Q.
Guo
,
G.
Hu
, and
J.
Yang
, “
Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators
,”
Appl. Phys. Lett.
105
,
121901
(
2014
).
20.
V.
Leroy
,
A.
Strybulevych
,
M.
Lanoy
,
F.
Lemoult
,
A.
Tourin
, and
J. H.
Page
, “
Superabsorption of acoustic waves with bubble metascreens
,”
Phys. Rev. B
91
,
020301
(
2015
).
21.
A.
Lapin
, “
Monopole-dipole type resonator in a narrow pipe
,”
Acoust. Phys.
49
,
731
732
(
2003
).
22.
J. R.
Piper
,
V.
Liu
, and
S.
Fan
, “
Total absorption by degenerate critical coupling
,”
Appl. Phys. Lett.
104
,
251110
(
2014
).
23.
C.
Goffaux
,
J.
Sánchez-Dehesa
,
A. L.
Yeyati
,
P.
Lambin
,
A.
Khelif
,
J.
Vasseur
, and
B.
Djafari-Rouhani
, “
Evidence of Fano-like interference phenomena in locally resonant materials
,”
Phys. Rev. Lett.
88
,
225502
(
2002
).
24.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
, “
Ultrasonic metamaterials with negative modulus
,”
Nat. Mater.
5
,
452
456
(
2006
).
25.
B.
Luk'yanchuk
,
N. I.
Zheludev
,
S. A.
Maier
,
N. J.
Halas
,
P.
Nordlander
,
H.
Giessen
, and
C. T.
Chong
, “
The Fano resonance in plasmonic nanostructures and metamaterials
,”
Nat. Mater.
9
,
707
715
(
2010
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.4930944 for details on (1) scattering and absorption coefficients expressed in terms of response functions, (2) the approach to retrieve resonators' response functions from experimental data, and (3) the setups and measurement method by impedance tubes.
27.
M.
Yang
,
G.
Ma
,
Y.
Wu
,
Z.
Yang
, and
P.
Sheng
, “
Homogenization scheme for acoustic metamaterials
,”
Phys. Rev. B
89
,
064309
(
2014
).
28.
Y.
Ding
,
Z.
Liu
,
C.
Qiu
, and
J.
Shi
, “
Metamaterial with simultaneously negative bulk modulus and mass density
,”
Phys. Rev. Lett.
99
,
093904
(
2007
).
29.
S. H.
Lee
,
C. M.
Park
,
Y. M.
Seo
,
Z. G.
Wang
, and
C. K.
Kim
, “
Composite acoustic medium with simultaneously negative density and modulus
,”
Phys. Rev. Lett.
104
,
054301
(
2010
).

Supplementary Material

You do not currently have access to this content.