The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top a 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.

1.
J.
Zegenhagen
,
Surf. Sci. Rep.
18
,
202
(
1993
).
2.
I. A.
Vartanyants
and
M. V.
Kovalchuk
,
Rep. Prog. Phys.
64
,
1009
(
2001
).
3.
M. J.
Bedzyk
and
L. W.
Cheng
,
Rev. Mineral. Geochem.
49
,
221
(
2002
).
4.
D. P.
Woodruff
,
Rep. Prog. Phys.
68
,
743
(
2005
).
5.
The X-Ray Standing Wave Technique: Principles and Applications
, edited by
J.
Zegenhagen
and
A.
Kazimirov
(
World Scientific Publishing Co.
,
Singapore
,
2013
).
6.
B. W.
Batterman
,
Phys. Rev. A
133
,
A759
(
1964
).
7.
J. A.
Golovchenko
,
B. W.
Batterman
, and
W. L.
Brown
,
Phys. Rev. B
10
,
4239
(
1974
).
8.
L.
Cheng
,
P.
Fenter
,
M. J.
Bedzyk
, and
N. C.
Sturchio
,
Phys. Rev. Lett.
90
,
255503
(
2003
).
9.
J. A.
Van Bokhoven
,
T. L.
Lee
,
M.
Drakopoulos
,
C.
Lamberti
,
S.
Thiess
, and
J.
Zegenhagen
,
Nat. Mater.
7
,
551
(
2008
).
10.
T. L.
Lee
,
C.
Bihler
,
W.
Schoch
,
W.
Limmer
,
J.
Daeubler
,
S.
Thiess
,
M. S.
Brandt
, and
J.
Zegenhagen
,
Phys. Rev. B
81
,
235207
(
2010
).
11.
J. A.
Golovchenko
,
J. R.
Patel
,
D. R.
Kaplan
,
P. L.
Cowan
, and
M. J.
Bedzyk
,
Phys. Rev. Lett.
49
,
560
(
1982
).
12.
Y. L.
Qian
,
N. C.
Sturchio
,
R. P.
Chiarello
,
P. F.
Lyman
,
T. L.
Lee
, and
M. J.
Bedzyk
,
Science
265
,
1555
(
1994
).
13.
J. D.
Emery
,
B.
Detlefs
,
H. J.
Karmel
,
L. O.
Nyakiti
,
D. K.
Gaskill
,
M. C.
Hersam
,
J.
Zegenhagen
, and
M. J.
Bedzyk
,
Phys Rev. Lett.
111
,
215501
(
2013
).
14.
M. J.
Bedzyk
,
G. M.
Bommarito
, and
J. S.
Schildkraut
,
Phys. Rev. Lett.
62
,
1376
(
1989
).
15.
M. J.
Bedzyk
,
D. H.
Bilderback
,
G. M.
Bommarito
,
M.
Caffrey
, and
J. S.
Schildkraut
,
Science
241
,
1788
(
1988
).
16.
M. K.
Tiwari
,
G. M.
Bhalerao
,
M.
Babu
,
A. K.
Sinha
, and
C.
Mukherjee
,
J. Appl. Phys.
103
,
054311
(
2008
).
17.
M. K.
Tiwari
,
K. J. S.
Sawhney
,
T.-L.
Lee
,
S. G.
Alcock
, and
G. S.
Lodha
,
Phys. Rev. B
80
,
035434
(
2009
).
18.
A.
von Bohlen
,
M.
Krämer
,
C.
Sternemann
, and
M.
Paulus
,
J. Anal. At. Spectrom.
24
,
792
800
(
2009
);
A.
von Bohlen
,
M.
Brücher
,
B.
Holland
,
R.
Wagner
, and
R.
Hergenröder
,
Spectrochim. Acta, Part B
65
,
409
414
(
2010
).
19.
T.
Kawamura
and
H.
Takenaka
,
J. Appl. Phys.
75
,
3806
(
1994
);
V.
Kohli
,
M. J.
Bedzyk
, and
P.
Fenter
,
Phys. Rev. B
81
,
054112
(
2010
).
20.
T.
Matsushita
,
A.
Iida
,
T.
Ishikawa
,
T.
Nakagiri
, and
K.
Sakai
,
Nucl. Instrum. Methods Phys. Res. A
246
,
751
(
1986
).
21.
M. J.
Bedzyk
, e-print arXiv:0908.2115 [cond-mat.mtrl-sci];
The X-Ray Standing Wave Technique: Principles and Applications
, edited by
J.
Zegenhagen
and
A.
Kazimirov
(
World Scientific
,
Singapore
,
2013
), Chap. 5.
22.
D. K. G.
de Boer
,
Phys. Rev. B
44
,
498
(
1991
).
23.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 7th ed. (
Cambridge University Press
,
United Kingdom
,
1999
), pp.
554
630
.
24.
M. K.
Tiwari
and
G.
Das
, e-print arXiv:1406.3581v1 [cond-mat.mes-hall].
25.
M. K.
Tiwari
,
P.
Gupta
,
A. K.
Sinha
,
S. R.
Kane
,
A. K.
Singh
,
S. R.
Garg
,
C. K.
Garg
,
G. S.
Lodha
, and
S. K.
Deb
,
J. Synchrotron Radiat.
20
,
386
(
2013
).
26.
J.
Wang
,
M. J.
Bedzyk
,
T. L.
Penner
, and
M.
Caffrey
,
Nature
354
,
377
(
1991
).
You do not currently have access to this content.