The kinetic frictional force between a nanowire and its supporting flat substrate was measured using nanomanipulation with optical microscopy at ambient atmosphere. During testing, the nanowire was pushed at its center point by a sharp tip and thus exhibited an arc shape held by the frictional shear stress (kinetic friction per area). The arc-shaped nanowire slid along the supporting substrate with further pushing. The frictional shear stress was derived from the arc shape of the nanowire based on the theory of elasticity. The frictional shear stresses of Al2O3 nanowires on the Si and SiN substrates were measured to be 2.0 ± 0.2 and 1.5 ± 0.2 MPa, respectively. It was found that the lengths of the nanowires and their angular orientations with the substrate, the arc shapes being formed and the driving mode of the tip had insignificant effects on the measured frictional shear stress.

1.
W.
Spengen
,
R.
Modlinski
,
R.
Puers
, and
A.
Jourdain
, in
Springer Handbook of Nanotechnology
, edited by
B.
Bhushan
(
Springer
,
Berlin Heidelberg
,
2007
), p.
1663
.
2.
L. F.
Boesel
,
C.
Greiner
,
E.
Arzt
, and
A.
del Campo
,
Adv. Mater.
22
,
2125
(
2010
).
3.
D.
Dietzel
,
U.
Schwarz
, and
A.
Schirmeisen
, in
Fundamentals of Friction and Wear on the Nanoscale
, edited by
E.
Gnecco
and
E.
Meyer
(
Springer International Publishing
,
2015
), p.
363
.
4.
D.
Maharaj
and
B.
Bhushan
, in
Handbook of Nanomaterials Properties
, edited by
B.
Bhushan
,
D.
Luo
,
S. R.
Schricker
,
W.
Sigmund
, and
S.
Zauscher
(
Springer
,
Berlin Heidelberg
,
2014
), p.
299
.
5.
T.
Junno
,
K.
Deppert
,
L.
Montelius
, and
L.
Samuelson
,
Appl. Phys. Lett.
66
,
3627
(
1995
).
6.
P. W. K.
Rothemund
,
Nature
440
,
297
(
2006
).
7.
S.
Kim
,
D. C.
Ratchford
, and
X. Q.
Li
,
ACS Nano
3
,
2989
(
2009
).
8.
E.
Meyer
,
R.
Overney
,
D.
Brodbeck
,
L.
Howald
,
R.
Luthi
,
J.
Frommer
, and
H. J.
Güntherodt
,
Phys. Rev. Lett.
69
,
1777
(
1992
).
9.
R.
Lüthi
,
E.
Meyer
,
H.
Haefke
,
L.
Howald
,
W.
Gutmannsbauer
, and
H.-J.
Güntherodt
,
Science
266
,
1979
(
1994
).
10.
P. E.
Sheehan
and
C. M.
Lieber
,
Science
272
,
1158
(
1996
).
11.
M. R.
Falvo
,
R. M.
Taylor Ii
,
A.
Helser
,
V.
Chi
,
F. P.
Brooks
, Jr.
,
S.
Washburn
, and
R.
Superfine
,
Nature
397
,
236
(
1999
).
12.
D.
Dietzel
,
T.
Monninghoff
,
L.
Jansen
,
H.
Fuchs
,
C.
Ritter
,
U. D.
Schwarz
, and
A.
Schirmeisen
,
J. Appl. Phys.
102
,
084306
(
2007
).
13.
D.
Dietzel
,
C.
Ritter
,
T.
Monninghoff
,
H.
Fuchs
,
A.
Schirmeisen
, and
U. D.
Schwarz
,
Phys. Rev. Lett.
101
,
125505
(
2008
).
14.
H. J.
Kim
,
K. H.
Kang
, and
D. E.
Kim
,
Nanoscale
5
,
6081
(
2013
).
15.
M.
Bordag
,
A.
Ribayrol
,
G.
Conache
,
L. E.
Fröberg
,
S.
Gray
,
L.
Samuelson
,
L.
Montelius
, and
H.
Pettersson
,
Small
3
,
1398
(
2007
).
16.
G.
Conache
,
S. M.
Gray
,
A.
Ribayrol
,
L. E.
Fröberg
,
L.
Samuelson
,
L.
Montelius
, and
H.
Pettersson
,
J. Appl. Phys.
108
,
094307
(
2010
).
17.
M. C.
Strus
,
R. R.
Lahiji
,
P.
Ares
,
V.
Lopez
,
A.
Raman
, and
R.
Reifenberger
,
Nanotechnology
20
,
385709
(
2009
).
18.
Q.
Qin
and
Y.
Zhu
,
ACS Nano
5
,
7404
(
2011
).
19.
Y.
Zhu
,
Q.
Qin
,
Y.
Gu
, and
Z.
Wang
,
Nanoscale Res. Lett.
5
,
291
(
2010
).
20.
B.
Polyakov
,
L. M.
Dorogin
,
S.
Vlassov
,
I.
Kink
,
A.
Lohmus
,
A. E.
Romanov
, and
R.
Lohmus
,
Solid State Commun.
151
,
1244
(
2011
).
21.
L. M.
Dorogin
,
S.
Vlassov
,
B.
Polyakov
,
M.
Antsov
,
R.
Lõhmus
,
I.
Kink
, and
A. E.
Romanov
,
Phys. Status Solidi B
250
,
305
(
2013
).
22.
B.
Polyakov
,
L.
Dorogin
,
S.
Vlassov
,
I.
Kink
, and
R.
Lõhmus
, in
Fundamentals of Friction and Wear on the Nanoscale
, edited by
E.
Gnecco
and
E.
Meyer
(
Springer International Publishing
,
2015
), p.
395
.
23.
D. K.
Tran
and
K. H.
Chung
,
Exp. Mech.
55
,
903
(
2015
).
24.
L.
Hou
,
S.
Wang
, and
H.
Huang
,
Nanotechnology
26
,
165702
(
2015
).
25.
H.
Xie
,
S.
Wang
, and
H.
Huang
,
J. Mater. Res.
30
,
1852
(
2015
).
26.
R.
Maboudian
and
R. T.
Howe
,
J. Vac. Sci. Technol., B
15
,
1
(
1997
).
27.
W. M.
Van Spengen
,
R.
Puers
, and
I.
De Wolf
,
J. Adhes. Sci. Technol.
17
,
563
(
2003
).
28.
B.
Bhushan
,
J. Vac. Sci. Technol., B
21
,
2262
(
2003
).
29.
D.
Dietzel
,
T.
Monninghoff
,
C.
Herding
,
M.
Feldmann
,
H.
Fuchs
,
B.
Stegemann
,
C.
Ritter
,
U. D.
Schwarz
, and
A.
Schirmeisen
,
Phys. Rev. B
82
,
035401
(
2010
).
30.
Y.
Yuk
,
J. W.
Hong
,
H.
Lee
,
S. W.
Han
, and
J. Y.
Park
,
Nanotechnology
26
,
135707
(
2015
).
31.
S.
Wang
,
G.
Chen
,
H.
Huang
,
S.
Ma
,
H.
Xu
,
Y.
He
, and
J.
Zou
,
Nanotechnology
24
,
505705
(
2013
).
32.
S.
Wang
,
Y.
He
,
H.
Huang
,
J.
Zou
,
J. G.
Auchterlonie
,
L.
Hou
, and
B.
Huang
,
Nanotechnology
24
,
285703
(
2013
).
33.
S.
Wang
,
Y.
Wu
,
L.
Lin
,
Y.
He
, and
H.
Huang
,
Small
11
,
1672
(
2015
).
34.
R.
Frisch-Fay
,
Flexible Bars
(
Butterworths
,
Washington, D.C.
,
1962
).
35.
B.
Polyakov
,
L. M.
Dorogin
,
A.
Lohmus
,
A. E.
Romanov
, and
R.
Lohmus
,
Appl. Surf. Sci.
258
,
3227
(
2012
).
36.
L.
Bergstrom
,
Adv. Colloid Interface Sci.
70
,
125
(
1997
).
You do not currently have access to this content.