Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

1.
H.
Li
,
M.
Eddaoudi
,
M.
O'Keeffe
, and
O.
Yaghi
,
Nature
402
,
276
(
1999
).
2.
O.
Yaghi
,
G.
Li
, and
H.
Li
,
Nature
378
,
703
(
1995
).
3.
G.
Férey
and
C.
Serre
,
Chem. Soc. Rev.
38
,
1380
(
2009
).
4.
H. K.
Arslan
,
O.
Shekhah
,
J.
Wohlgemuth
,
M.
Franzreb
,
R. A.
Fischer
, and
C.
Wöll
,
Adv. Funct. Mater.
21
,
4228
(
2011
).
5.
O.
Shekhah
,
J.
Liu
,
R. A.
Fischer
, and
C.
Wöll
,
Chem. Soc. Rev.
40
,
1081
(
2011
).
6.
S.
Kitagawa
,
R.
Kitaura
, and
S.
Noro
,
Angew. Chem., Int. Ed. Engl.
43
,
2334
(
2004
).
7.
O. K.
Farha
,
A. Ö.
Yazaydın
,
I.
Eryazici
,
C. D.
Malliakas
,
B. G.
Hauser
,
M. G.
Kanatzidis
,
S. T.
Nguyen
,
R. Q.
Snurr
, and
J. T.
Hupp
,
Nat. Chem.
2
,
944
(
2010
).
8.
J.
Liu
,
W.
Zhou
,
J.
Liu
,
I.
Howard
,
G.
Kilibarda
,
S.
Schlabach
,
D.
Coupry
,
M.
Addicoat
,
S.
Yoneda
,
Y.
Tsutsui
,
T.
Sakurai
,
Z.
Wang
,
P.
Lindemann
,
E.
Redel
,
T.
Heine
, and
C.
Wöll
,
Angew. Chem., Int. Ed. Engl.
54
,
7441
(
2015
).
9.
J.-R.
Li
,
R. J.
Kuppler
, and
H.-C.
Zhou
,
Chem. Soc. Rev.
38
,
1477
(
2009
).
10.
J.
Liu
,
P. K.
Thallapally
,
B. P.
McGrail
,
D. R.
Brown
, and
J.
Liu
,
Chem. Soc. Rev.
41
,
2308
(
2012
).
11.
M.
Yoon
,
R.
Srirambalaji
, and
K.
Kim
,
Chem. Rev.
112
,
1196
(
2011
).
12.
O.
Shekhah
and
M.
Eddaoudi
,
Chem. Commun.
49
,
10079
(
2013
).
13.
S.
Eslava
,
L.
Zhang
,
S.
Esconjauregui
,
J.
Yang
,
K.
Vanstreels
,
M. R.
Baklanov
, and
E.
Saiz
,
Chem. Mater.
25
,
27
(
2013
).
14.
E.
Redel
,
Z.
Wang
,
S.
Walheim
,
J.
Liu
,
H.
Gliemann
, and
C.
Wöll
,
Appl. Phys. Lett.
103
,
091903
(
2013
).
15.
L.
Heinke
,
M.
Tu
,
S.
Wannapaiboon
,
R. A.
Fischer
, and
C.
Wöll
,
Microporous Mesoporous Mater.
216
,
200
(
2015
).
16.
J. C.
Tan
and
A. K.
Cheetham
,
Chem. Soc. Rev.
40
,
1059
(
2011
).
17.
S.
Bundschuh
,
O.
Kraft
,
H. K.
Arslan
,
H.
Gliemann
,
P. G.
Weidler
, and
C.
Wöll
,
Appl. Phys. Lett.
101
,
101910
(
2012
).
18.
B.
Van de Voorde
,
R.
Ameloot
,
I.
Stassen
,
M.
Everaert
,
D.
De Vos
, and
J.-C.
Tan
,
J. Mater. Chem. C
1
,
7716
(
2013
).
19.
Z.
Li
and
H. C.
Zeng
,
J. Am. Chem. Soc.
136
,
5631
(
2014
).
20.
S. K.
Mishra
,
D.
Verma
,
S.
Bysakh
, and
L. C.
Pathak
,
J. Nanomater.
2013
,
949416
(
2013
).
21.
J.
Liu
,
E.
Redel
,
S.
Walheim
,
Z.
Wang
,
V.
Oberst
,
J.
Liu
,
S.
Heissler
,
A.
Welle
,
M.
Moosmann
,
T.
Scherer
,
M.
Bruns
,
H.
Gliemann
, and
C.
Wöll
,
Chem. Mater.
27
,
1991
(
2015
).
22.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
23.
A.
Perriot
and
E.
Barthel
,
J. Mater. Res.
19
,
600
(
2004
).
24.
W. A.
Brantley
,
J. Appl. Phys.
44
,
534
(
1973
).
25.
N.
Arshi
,
J.
Lu
,
C. G.
Lee
,
J. H.
Yoon
,
B. H.
Koo
, and
F.
Ahmed
,
Bull. Mater. Sci.
36
,
807
(
2013
).
26.
H. N.
Shah
,
V.
Chawla
,
R.
Jayaganthan
, and
D.
Kaur
,
Bull. Mater. Sci.
33
,
103
(
2010
).
27.
T.
Wittkowski
,
J.
Jorzick
,
H.
Seitz
,
B.
Schröder
,
K.
Jung
, and
B.
Hillebrands
,
Thin Solid Films
398
,
465
(
2001
).
28.
K.
Zeng
,
F.
Zhu
,
J.
Hu
,
L.
Shen
,
K.
Zhang
, and
H.
Gong
,
Thin Solid Films
443
,
60
(
2003
).
29.
M.
Tafipolsky
,
S.
Amirjalayer
, and
R.
Schmid
,
J. Phys. Chem. C
114
,
14402
(
2010
).
30.
K.
Maex
,
M. R.
Baklanov
,
D.
Shamiryan
,
F.
Lacopi
,
S. H.
Brongersma
, and
Z. S.
Yanovitskaya
,
J. Appl. Phys.
93
,
8793
(
2003
).
31.
Y.
Choi
and
S.
Suresh
,
Acta Mater.
50
,
1881
(
2002
).
32.
C. I.
Hammetter
,
R. G.
Rinaldi
, and
F. W.
Zok
,
J. Appl. Mech.
80
,
041015
(
2013
).
33.
S.
Babaee
,
B. H.
Jahromi
,
A.
Ajdari
,
H.
Nayeb-Hashemi
, and
A.
Vaziri
,
Acta Mater.
60
,
2873
(
2012
).
34.
N.
Sridhar
,
J. M.
Rickman
, and
D. J.
Srolovitz
,
J. Appl. Phys.
82
,
4852
(
1997
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.4930141 for Fig. S1 and experimental details for film fabrication; Fig. S2 for ITO XRD analysis and AFM analysis in Fig. S5 and Table S2; Fig. S3, Fig. S4, Fig. S5, and Table S1 give information on the properties of HKUST-1 thin films; Fig. S6 shows the evaluation for small forces on multilayer systems; and Fig. S7 shows cross-sectional SEM images of the multilayered systems.

Supplementary Material

You do not currently have access to this content.