Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis and characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.

1.
F. P.
Bundy
,
H. T.
Hall
,
H. M.
Strong
, and
R. H.
Wentorf
, Jr.
,
Nature
176
,
51
(
1955
).
2.
T.
Irifune
,
A.
Kurio
,
S.
Sakamoto
,
T.
Inoue
, and
H.
Sumiya
,
Nature
421
,
599
(
2003
).
3.
P. F.
McMillan
,
Nat. Mater.
1
,
19
(
2002
).
4.
R. B.
Kaner
,
J. J.
Gilman
, and
S. H.
Tolbert
,
Science
308
,
1268
(
2005
).
5.
R. H.
Wentorf
, Jr.
,
J. Chem. Phys.
26
,
956
(
1957
).
6.
Y. J.
Tian
,
B.
Xu
,
D.
Yu
,
Y.
Ma
,
Y.
Wang
,
Y.
Jiang
,
W.
Hu
,
C.
Tang
,
Y.
Gao
,
K.
Luo
,
Z.
Zhao
,
L.
Wang
,
B.
Wen
,
J.
He
, and
Z.
Liu
,
Nature
493
,
385
(
2013
).
7.
N.
Dubrovinskaia
,
V. L.
Solozhenko
,
N.
Miyajima
,
V.
Dmitriev
,
O.
Kurakevych
, and
L.
Dubrovinsky
,
Appl. Phys. Lett.
90
,
101912
(
2007
).
8.
D.
He
,
Y.
Zhao
,
L.
Daemen
,
J.
Qian
,
T. D.
Shen
, and
T. W.
Zerda
,
Appl. Phys. Lett.
81
,
643
(
2002
).
9.
Y.
Zhao
,
D. W.
He
,
L. L.
Daemen
,
T. D.
Shen
,
R. B.
Schwarz
,
Y.
Zhu
,
D. L.
Bish
,
J.
Huang
,
J.
Zhang
,
G.
Shen
,
J.
Qian
, and
T. W.
Zerda
,
J. Mater. Res.
17
,
3139
(
2002
).
10.
R. H.
Wentorf
,
R. C.
DeVries
, and
F. P.
Bundy
,
Science
208
,
873
(
1980
).
11.
S.
Veprek
,
J. Vac. Sci. Technol. A
17
,
2401
(
1999
).
12.
S.
Veprek
, in
Handbook of Ceramic Hard Materials
, edited by
R.
Riedel
(
Wiley-VCH Verlag GmbH
,
Weinheim, Germany
,
2000
), pp.
104
139
.
13.
A. R.
Badzian
, M
ater. Res. Bull.
16
,
1385
(
1981
).
14.
T.
Sasaki
,
M.
Akaishi
,
S.
Yamaoka
,
Y.
Fujiki
, and
T.
Oikawa
,
Chem. Mater.
5
,
695
(
1993
).
15.
S.
Nakano
,
M.
Akaishi
,
T.
Sasaki
, and
S.
Yamaoka
,
Chem. Mater.
6
,
2246
(
1994
).
16.
E.
Knittle
,
R. B.
Kaner
,
R.
Jeanloz
, and
M. L.
Cohen
,
Phys. Rev. B
51
,
12149
(
1995
).
17.
T.
Komatsu
,
M.
Nomura
,
Y.
Kakudate
, and
S.
Fujiwara
,
J. Mater. Chem.
6
,
1799
(
1996
).
18.
V. L.
Solozhenko
,
D.
Andrault
,
G.
Fiquet
,
M.
Mezouar
, and
D. C.
Rubie
,
Appl. Phys. Lett.
78
,
1385
(
2001
).
19.
V. L.
Solozhenko
,
S. N.
Dub
, and
N. V.
Novikov
,
Diamond Relat. Mater.
10
,
2228
(
2001
).
20.
Y.
Tateyama
,
T.
Ogitsu
,
K.
Kusakabe
,
S.
Tsuneyuki
, and
S.
Itoh
,
Phys. Rev. B
55
,
R10161
(
1997
).
21.
D.
Li
,
D.
Yu
,
B.
Xu
,
J.
He
,
Z.
Liu
,
P.
Wang
, and
Y.
Tian
,
Cryst. Growth Des.
8
,
2096
(
2008
).
22.
M. J.
Tang
,
D.
He
,
W.
Wang
,
H.
Wang
,
C.
Xu
,
F.
Li
, and
J.
Guan
,
Scr. Mater.
66
,
781
(
2012
).
23.
A. Y.
Liu
and
M. L.
Cohen
,
Science
245
,
841
(
1989
).
24.
A. R.
Krauss
,
O.
Auciello
,
D. M.
Gruen
,
A.
Jayatissa
,
S.
Sumant
,
J.
Tucek
,
D. C.
Mancini
,
N.
Moldovan
,
A.
Erdemir
,
D.
Ersoy
,
M. N.
Gardos
,
H. G.
Busmann
,
E. M.
Meyer
, and
M. Q.
Ding
,
Diamond Relat. Mater.
10
,
1952
(
2001
).
25.
H.
Sun
,
S. H.
Jhi
,
D.
Roundy
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
64
,
094108
(
2001
).
26.
S.
Chen
,
X. G.
Gong
, and
S. H.
Wei
,
Phys. Rev. Lett.
98
,
015502
(
2007
).
27.
J. C.
Zheng
,
H. Q.
Wang
,
A. T. S.
Wee
, and
C. H. A.
Huan
,
Phys. Rev. B
66
,
092104
(
2002
).
28.
Z.
Pan
,
H.
Sun
, and
C.
Chen
,
Phys. Rev. Lett.
98
,
135505
(
2007
).
29.
Y.
Zhang
,
H.
Sun
, and
C.
Chen
,
Phys. Rev. Lett.
93
,
195504
(
2004
).
30.
Y.
Zhao
,
J.
Qian
,
L. L.
Daemen
,
C.
Pantea
,
J.
Zhang
,
G. A.
Voronin
, and
T. W.
Zerda
,
Appl. Phys. Lett.
84
,
1356
(
2004
).
31.
W.
Wang
,
D.
He
,
M.
Tang
,
F.
Li
,
L.
Liu
, and
Y.
Bi
,
Diamond Relat. Mater.
27
,
49
(
2012
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4929728 for experimental details and the photographs of samples, worn flank surfaces, and XPS spectra of diamond-cBN alloy.
33.
V. L.
Solozhenko
,
O. O.
Kurakevych
,
D.
Andrault
,
Y.
Le Godec
, and
M.
Mezouar
,
Phys. Rev. Lett.
102
,
015506
(
2009
).
34.
X.
Liu
,
X.
Jia
,
Z.
Zhang
,
M.
Zhao
,
W.
Guo
,
G.
Huang
, and
H. A.
Ma
,
Cryst. Growth Des.
11
,
1006
(
2011
).
35.
L.
Ci
,
L.
Song
,
C.
Jin
,
D.
Jariwala
,
D.
Wu
,
Y.
Li
,
A.
Srivastava
,
Z. F.
Wang
,
K
,
Storr
,
L.
Balicas
,
F.
Liu
, and
P. M.
Ajayan
,
Nat. Mater.
9
,
430
(
2010
).
36.
M. O.
Watanabe
,
S.
Itoh
,
K.
Mizushima
, and
T.
Sasaki
,
Appl. Phys. Lett.
68
,
2962
(
1996
).
37.
S.
Veprek
and
M. G. J.
Veprek-Heijman
,
Surf. Coat. Technol.
202
,
5063
(
2008
).
38.
Y. K.
Chou
,
C. J.
Evans
, and
M. M.
Barash
,
J. Mater. Process. Technol.
124
,
274
(
2002
).

Supplementary Material

You do not currently have access to this content.