We have investigated the microwave response of nanotube Josephson junctions at 600–900 MHz at microwave powers corresponding to currents from 0 to 2 × IC in the junction. Compared with theoretical modeling, the response of the junctions corresponds well to the lumped element model of resistively and capacitively shunted junction. We demonstrate the operation of these superconducting FETs as charge detectors at high frequencies without any matching circuits. Gate-voltage-induced charge QG modifies the critical current IC, which changes the effective impedance of the junction under microwave irradiation. This change, dependent on the transfer characteristics dIC/dQG, modifies the reflected signal and it can be used for wide band electrometry. We measure a sensitivity of 3.1×105e/Hz from a sample which has a maximum switching current of 2.6 nA.

1.
P.
de Gennes
,
Rev. Mod. Phys.
36
,
225
(
1964
).
2.
M.
Tinkham
,
Introduction to superconductivity
(
Dover Publications
,
2004
).
4.
A.
Kasumov
,
R.
Deblock
,
M.
Kociak
,
B.
Reulet
,
H.
Bouchiat
,
I.
Khodos
,
Y.
Gorbatov
,
V.
Volkov
,
C.
Journet
, and
M.
Burghard
,
Science
284
,
1508
(
1999
).
5.
A.
Morpurgo
,
J.
Kong
,
C.
Marcus
, and
H.
Dai
,
Science
286
,
263
(
1999
).
6.
A.
Kasumov
,
M.
Kociak
,
M.
Ferrier
,
R.
Deblock
,
S.
Guéron
,
B.
Reulet
,
I.
Khodos
,
O.
Stéphan
, and
H.
Bouchiat
,
Phys. Rev. B
68
,
214521
(
2003
).
7.
P.
Jarillo-Herrero
,
J.
van Dam
, and
L.
Kouwenhoven
,
Nature
439
,
953
(
2006
).
8.
H.
Jørgensen
,
K.
Grove-Rasmussen
,
T.
Novotný
,
K.
Flensberg
, and
P.
Lindelof
,
Phys. Rev. Lett.
96
,
207003
(
2006
).
9.
J.-P.
Cleuziou
,
W.
Wernsdorfer
,
V.
Bouchiat
,
T.
Ondarçuhu
, and
M.
Monthioux
,
Nat. Nanotechnol.
1
,
53
(
2006
).
10.
J.-P.
Cleuziou
,
W.
Wernsdorfer
,
S.
Andergassen
,
S.
Florens
,
V.
Bouchiat
,
T.
Ondarçuhu
, and
M.
Monthioux
,
Phys. Rev. Lett.
99
,
117001
(
2007
).
11.
A.
Eichler
,
M.
Weiss
,
S.
Oberholzer
,
C.
Schönenberger
,
A.
Levy Yeyati
,
J.
Cuevas
, and
A.
Martín-Rodero
,
Phys. Rev. Lett.
99
,
126602
(
2007
).
12.
Y.
Zhang
,
G.
Liu
, and
C. N.
Lau
,
Nano Res.
1
,
145
(
2008
).
13.
F.
Wu
,
R.
Danneau
,
P.
Queipo
,
E.
Kauppinen
,
T.
Tsuneta
, and
P.
Hakonen
,
Phys. Rev. B
79
,
073404
(
2009
).
14.
K.
Grove-Rasmussen
,
H.
Jørgensen
,
B.
Andersen
,
J.
Paaske
,
T.
Jespersen
,
J.
Nygård
,
K.
Flensberg
, and
P.
Lindelof
,
Phys. Rev. B
79
,
134518
(
2009
).
15.
B. H.
Schneider
,
S.
Etaki
,
H. S. J.
van der Zant
, and
G. A.
Steele
,
Sci. Rep.
2
,
599
(
2012
).
16.
E.
Vecino
,
M.
Buitelaar
,
A.
Martín-Rodero
,
C.
Schönenberger
, and
A. L.
Yeyati
,
Solid State Commun.
131
,
625
(
2004
).
17.
J.
Haruyama
,
A.
Tokita
,
N.
Kobayashi
,
M.
Nomura
,
S.
Miyadai
,
K.
Takazawa
,
A.
Takeda
, and
Y.
Kanda
,
Appl. Phys. Lett.
84
,
4714
(
2004
).
18.
I.
Takesue
,
J.
Haruyama
,
N.
Kobayashi
,
S.
Chiashi
,
S.
Maruyama
,
T.
Sugai
, and
H.
Shinohara
,
Phys. Rev. Lett.
96
,
057001
(
2006
).
19.
T.
Tsuneta
,
L.
Lechner
, and
P.
Hakonen
,
Phys. Rev. Lett.
98
,
087002
(
2007
).
20.
T.
Tsuneta
,
L.
Lechner
, and
P.
Hakonen
,
J. Phys.: Conf. Ser.
150
,
022091
(
2009
).
21.
L.
Lechner
,
M.
Gaaß
,
A.
Paila
,
M.
Sillanpää
,
C.
Strunk
, and
P.
Hakonen
,
Nanotechnology
22
,
125203
(
2011
).
22.
R.
Schoelkopf
,
P.
Wahlgren
,
A.
Kozhevnikov
,
P.
Delsing
, and
D.
Prober
,
Science
280
,
1238
(
1998
).
23.
L.
Roschier
,
P.
Hakonen
,
K.
Bladh
,
P.
Delsing
,
K.
Lehnert
,
L.
Spietz
, and
R.
Schoelkopf
,
J. Appl. Phys.
95
,
1274
(
2004
).
24.
L.
Roschier
,
M.
Sillanpää
,
W.
Taihong
,
M.
Ahlskog
,
S.
Iijima
, and
P.
Hakonen
,
J. Low Temp. Phys.
136
,
465
(
2004
).
25.
L.
Roschier
and
P.
Hakonen
,
Cryogenics
44
,
783
(
2004
).
26.
D.
Vion
,
M.
Götz
,
P.
Joyez
,
D.
Esteve
, and
M.
Devoret
,
Phys. Rev. Lett.
77
,
3435
(
1996
).
You do not currently have access to this content.