We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B4C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched 10B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

1.
R. T.
Kouzes
,
J. H.
Ely
,
L. E.
Erikson
,
W. J.
Kernan
,
A. T.
Lintereur
,
E. R.
Siciliano
,
D. L.
Stephens
,
D. C.
Stromswold
,
R. M.
Van Ginhoven
, and
M. L.
Woodring
,
Nucl. Instrum. Methods Phys. Res., Sect. A
623
,
1035
(
2010
).
2.
G. F.
Knoll
,
Radiation Detection and Measurement
, 3rd ed. (
John Wiley and Sons, Inc., Hoboken
,
NJ
,
2000
).
3.
D. A.
Shea
and
D.
Morgan
,
The Helium-3 Shortage: Supply, Demand, and Options for Congress
(
Congressional Research Service
,
2010
).
4.
See http://www.nndc.bnl.gov/ for National Nuclear Data Center.
5.
A. P.
Simpson
,
S.
Jones
,
M. J.
Clapham
, and
S. A.
McElhaney
, “
A review of neutron detection technology alternative to Helium 3 for safeguards applications
,” in
INMM 52nd Annual Meeting
, July 17–21 (
2011
).
6.
D. S.
McGregor
,
M. D.
Hammig
,
Y. H.
Yang
,
H. K.
Gersch
, and
R. T.
Klann
,
Nucl. Instrum. Methods Phys. Res., Sect. A
500
,
272
(
2003
).
7.
C. M.
Lavelle
,
R. M.
Deacon
,
D. S.
Hussey
,
M.
Coplan
, and
C. W.
Clark
,
Nucl. Instrum. Methods Phys. Res., Sect. A
729
,
346
(
2013
).
8.
J. D.
Birks
,
Theory and Practice of Scintillation Counting
, 1st ed. (
Pergamon Press
,
1964
).
9.
J. C.
McComb
,
M. A.
Coplan
,
M.
Al-Sheikhly
,
A. K.
Thompson
,
R. E.
Vest
, and
C. W.
Clark
,
J. Appl. Phys.
115
,
144504
(
2014
).
10.
A.
Sayres
and
C. S.
Wu
,
Rev. Sci. Instrum.
28
,
758
(
1957
).
11.
H. A.
Koehler
,
L. J.
Ferderber
,
D. L.
Redhead
, and
P. J.
Ebert
,
Phys. Rev. A
9
,
768
(
1974
).
12.
P. P.
Hughes
,
A.
Beasten
,
J. C.
McComb
,
M. A.
Coplan
,
M.
Al-Sheikhly
,
A. K.
Thompson
,
R. E.
Vest
,
M. K.
Sprague
,
K. K.
Irikura
, and
C. W.
Clark
,
J. Chem. Phys.
141
,
194301
(
2014
).
13.
M.
Vidal-Dasilva
,
M.
Fernndez-Perea
,
J. A.
Mndez
,
J. A.
Aznrez
, and
J. I.
Larruquert
,
Appl. Opt.
47
,
2926
(
2008
).
14.
G. M.
Blumenstock
and
R. A. M.
Keski-Kuha
,
Appl. Opt.
33
,
5962
(
1994
).
15.
A. T.
Yue
,
M. S.
Dewey
,
D. M.
Gilliam
,
G. L.
Greene
,
A. B.
Laptev
,
J. S.
Nico
,
W. M.
Snow
, and
F. E.
Wietfeldt
,
Phys. Rev. Lett.
111
,
222501
(
2013
).
16.
P.
Willendrup
,
E.
Farhi
,
E.
Knudsen
,
U.
Filges
, and
K.
Lefmann
,
J. Neutron Res.
17
,
35
(
2014
).
17.

Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

18.
J. T. M.
de Haas
and
P.
Dorenbos
,
IEEE Trans. Nucl. Sci.
58
,
1290
(
2011
).
19.
T.
Goorley
,
M.
James
,
T.
Booth
,
F.
Brown
,
J.
Bull
,
L. J.
Cox
,
J. D. J.
Elson
,
M.
Fensin
,
R. A.
Forster
,
J.
Hendricks
 et al,
Nucl. Technol.
180
,
298
(
2012
).
20.
J. M.
Friedrich
,
C.
Ponce-de-Leon
,
G. W.
Reade
, and
F. C.
Walsh
,
J. Electroanal. Chem.
561
,
203
(
2004
).
21.
U.
Arp
,
C.
Clark
,
L.
Deng
,
N.
Faradzhev
,
A.
Farrell
,
M.
Furst
,
S.
Grantham
,
E.
Hagley
,
S.
Hill
,
T.
Lucatorto
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
649
,
12
(
2011
).
You do not currently have access to this content.