Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

1.
A.
Janotti
and
C. G.
Van de Walle
,
Rep. Prog. Phys.
72
,
126501
(
2009
).
2.
B. F.
Spencer
,
D. M.
Graham
,
S. J. O.
Hardman
,
E. A.
Seddon
,
M. J.
Cliffe
,
K. L.
Syres
,
A. G.
Thomas
,
S. K.
Stubbs
,
F.
Sirotti
,
M. G.
Silly
,
P. F.
Kirkham
,
A. R.
Kumarasinghe
,
G. J.
Hirst
,
A. J.
Moss
,
S. F.
Hill
,
D. A.
Shaw
,
S.
Chattopadhyay
, and
W. R.
Flavell
,
Phys. Rev. B
88
,
195301
(
2013
).
3.
A.
Janotti
and
C. G.
Van de Walle
,
Phys. Rev. B.
76
,
165202
(
2007
).
4.
K.
Liu
,
M.
Sakurai
, and
M.
Aono
,
Sensors
10
,
8604
(
2010
).
5.
A.
Kushwaha
and
M.
Aslam
,
J. Appl. Phys.
112
,
054316
(
2012
).
6.
S.
Lany
and
A.
Zunger
,
Phys. Rev. B
72
,
035215
(
2005
).
7.
S.
Hullavarad
,
N.
Hullavarad
,
D.
Look
, and
B.
Claflin
,
Nanoscale Res. Lett.
4
,
1421
(
2009
).
8.
D.
Wang
and
N.
Reynolds
,
ISRN Condens. Matter Phys.
2012
,
1
(
2012
).
9.
B.
Cheng
,
J.
Xu
,
Z.
Ouyang
,
C.
Xie
,
X.
Su
,
Y.
Xiao
, and
S.
Lei
,
Opt. Express
21
,
29719
(
2013
).
10.
K.
Bouzid
,
A.
Djelloul
,
N.
Bouzid
, and
J.
Bougdira
,
Phys. Status Solidi A
206
,
106
(
2009
).
11.
S. K.
Chaudhuri
,
M.
Ghosh
,
D.
Das
, and
A. K.
Raychaudhuri
,
J. Appl. Phys.
108
,
064319
(
2010
).
12.
V.
Strano
,
R. G.
Urso
,
M.
Scuderi
,
K. O.
Iwu
,
F.
Simone
,
E.
Ciliberto
,
C.
Spinella
, and
S.
Mirabella
,
J. Phys. Chem. C
118
,
28189
(
2014
).
13.
K. H.
Tam
,
C. K.
Cheung
,
Y. H.
Leung
,
A. B.
Djurisić
,
C. C.
Ling
,
C. D.
Beling
,
S.
Fung
,
W. M.
Kwok
,
W. K.
Chan
,
D. L.
Phillips
,
L.
Ding
, and
W. K.
Ge
,
J. Phys. Chem. B
110
,
20865
(
2006
).
14.
H.
Wagata
,
N.
Ohashi
,
K.
Katsumata
,
H.
Segawa
,
Y.
Wada
,
H.
Yoshikawa
,
S.
Ueda
,
K.
Okada
, and
N.
Matsushita
,
J. Mater. Chem.
22
,
20706
(
2012
).
15.
A.
Bera
and
D.
Basak
,
Appl. Phys. Lett.
94
,
163119
(
2009
).
16.
T. M.
Børseth
,
B. G.
Svensson
,
A. Y.
Kuznetsov
,
P.
Klason
,
Q. X.
Zhao
, and
M.
Willander
,
Appl. Phys. Lett.
89
,
262112
(
2006
).
17.
S. A.
Studenikin
and
M.
Cocivera
,
J. Appl. Phys.
91
,
5060
(
2002
).
18.
V.
Srikant
and
D. R.
Clarke
,
J. Appl. Phys.
83
,
5447
(
1998
).
19.
L. S.
Vlasenko
and
G. D.
Watkins
,
Physica B
376–377
,
677
(
2006
).
20.
A.
Kushwaha
,
H.
Kalita
, and
M.
Aslam
,
World Acad. Sci. Eng. Tech.
7
,
258
(
2013
).
21.
Y.
Lv
,
C.
Pan
,
X.
Ma
,
R.
Zong
,
X.
Bai
, and
Y.
Zhu
,
Appl. Catal., B
138
,
26
(
2013
).
22.
Q. H.
Li
,
T.
Gao
,
Y. G.
Wang
, and
T. H.
Wang
,
Appl. Phys. Lett.
86
,
123117
(
2005
).
23.
S.
Bayan
and
D.
Mohanta
,
Philos. Mag.
92
,
3909
(
2012
).
24.
M. E.
Swanwick
,
S. M.
Pfaendler
,
A. I.
Akinwande
, and
A. J.
Flewitt
,
Nanotechnology
23
,
344009
(
2012
).
25.
O.
Lupan
,
V. V.
Ursaki
,
G.
Chai
,
L.
Chow
,
G. A.
Emelchenko
,
I. M.
Tiginyanu
,
A. N.
Gruzintsev
, and
A. N.
Redkin
,
Sens. Actuators, B
144
,
56
(
2010
).
26.
J. J.
Hassan
,
M. A.
Mahdi
,
S. J.
Kasim
,
N. M.
Ahmed
,
H. A.
Hassan
, and
Z.
Hassan
,
Appl. Phys. Lett.
101
,
261108
(
2012
).
You do not currently have access to this content.