The Néel temperature (TN) in conventional antiferromagnets (AFM) decreases with decreasing particle size. In contrast, we present here evidence for an exotic facet of multiferroicity, whereby one can raise the TN by more than 200 K by decreasing the particle size. We illustrate this by taking the example of a tetragonal composition with x = 0.5 in the solid solutions of (1 − x)BiFeO3-xPbTiO3 (BF-xPT). We attribute it to the increase in the strength of the superexchange interaction via a decrease in the ferroelectric distortion in nanocrystalline powder of BF-0.5PT. The BF-0.5PT nanoparticles also exhibit exchange bias effect due to AFM core-FM shell type magnetic nanostructure.

1.
J. L.
Dormann
,
D.
Fiorani
, and
E.
Tronc
,
Adv. Chem. Phys.
98
,
283
(
1997
).
2.
Magnetic Properties of Fine Particles
, edited by
J. L.
Dormann
and
D.
Fiorani
(
North-Holland
,
Amsterdam
,
1992
).
3.
Surface Effects in Magnetic Nanoparticles
, edited by
D.
Fiorani
(
Springer
,
New York
,
2005
).
4.
Q. A.
Pankhurst
,
J.
Conolly
,
S. K.
Jones
, and
J.
Dobson
,
J. Phys. D: Appl. Phys.
36
,
R167
(
2003
).
5.
S.
Mørup
,
D. E.
Madsen
,
C.
Frandsen
,
C. R. H.
Bahl
, and
M. F.
Hansen
,
J. Phys.: Condens. Matter
19
,
213202
(
2007
).
6.
M.
Molina-Ruiz
,
A. F.
Lopeandía
,
F.
Pi
,
D.
Givord
,
O.
Bourgeois
, and
J.
Rodríguez-Viejo
,
Phys. Rev. B
83
,
140407(R)
(
2011
).
7.
R. H.
Kodma
,
A.
Makhlouf Salah
, and
A. E.
Berkowitz
,
Phys. Rev. Lett.
79
,
1393
(
1997
).
8.
T.
Ambrose
and
C. L.
Chien
,
Phys. Rev. Lett.
76
,
1743
(
1996
).
9.
Y. J.
Tang
,
D. J.
Smith
,
B. L.
Zink
,
F.
Hellman
, and
A. E.
Berkowitz
,
Phys. Rev. B
67
,
054408
(
2003
).
10.
E.
Weschke
,
H.
Ott
,
E.
Schierle
,
C.
Schüßler-Langeheine
,
D. V.
Vyalikh
,
G.
Kaindl
,
V.
Leiner
,
M.
Ay
,
T.
Schmitte
,
H.
Zabel
 et al,
Phys. Rev. Lett.
93
,
157204
(
2004
).
12.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature (London)
442
,
759
(
2006
).
13.
S.-W.
Cheong
and
M.
Mostovoy
,
Nat. Mater.
6
,
13
(
2007
).
14.
R.
Ramesh
and
N. A.
Spaldin
,
Nat. Mater.
6
,
21
(
2007
).
16.
A.
Singh
,
V.
Pandey
,
R. K.
Kotnala
, and
D.
Pandey
,
Phys. Rev. Lett.
101
,
247602
(
2008
).
17.
S.
Bhattacharjee
,
K.
Taji
,
C.
Moriyoshi
,
Y.
Kuroiwa
, and
D.
Pandey
,
Phys. Rev. B
84
,
104116
(
2011
).
18.
S.
Bhattacharjee
and
D.
Pandey
,
J. Appl. Phys.
107
,
124112
(
2010
).
19.
S.
Bhattacharjee
,
S.
Tripathi
, and
D.
Pandey
,
Appl. Phys. Lett.
91
,
042903
(
2007
).
20.
S.
Bhattacharjee
,
A.
Senyshyn
,
P. S. R.
Krishna
,
H.
Fuess
, and
D.
Pandey
,
Appl. Phys. Lett.
97
,
262506
(
2010
).
21.
S.
Bhattacharjee
,
A.
Senyshyn
,
H.
Fuess
, and
D.
Pandey
,
Phys. Rev. B
87
,
054417
(
2013
).
22.
W.-M.
Zhu
,
H.-Y.
Guo
, and
Z.-G.
Ye
,
Phys. Rev. B
78
,
014401
(
2008
).
23.
R. J.
Zeches
,
M. D.
Rossell
,
J. X.
Zhang
,
A. J.
Hatt
,
Q.
He
,
C.-H.
Yang
,
A.
Kumar
,
C. H.
Wang
,
A.
Melville
,
C.
Adamo
 et al,
Science
326
,
977
(
2009
).
24.
S.
Bhattacharjee
and
D.
Pandey
,
J. Appl. Phys.
110
,
084105
(
2011
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4913911 for details of sample synthesis and for structure refinement using synchrotron x-ray powder diffraction data.
26.
P.
Ravindran
,
R.
Vidya
,
A.
Kjekshus
, and
H.
Fjellvåg
,
Phys. Rev. B
74
,
224412
(
2006
).
27.
G. S.
Szabó
,
R. E.
Cohen
, and
H.
Krakauer
,
Phys. Rev. Lett.
80
,
4321
(
1998
).
28.
C. H.
Ahn
,
K. M.
Rabe
, and
J. M.
Triscone
,
Science
303
,
488
(
2004
).
29.
M. J.
Benitez
,
O.
Petracic
,
E. L.
Salabas
,
F.
Radu
,
H.
Tüysüz
,
F.
Schüth
, and
H.
Zabel
,
Phys. Rev. Lett.
101
,
097206
(
2008
).
30.
S. M.
Yusuf
,
P. K.
Manna
,
M. M.
Shirolkar
,
S. K.
Kulkarni
,
R.
Tewari
, and
G. K.
Dey
,
J. Appl. Phys.
113
,
173906
(
2013
).
31.
P. K.
Manna
and
S. M.
Yusuf
,
Phys. Rep.
535
,
61
(
2014
).
32.
S. M.
Selbach
,
T.
Tybell
,
M.-A.
Einarsrud
, and
T.
Grande
,
Chem. Mater.
19
,
6478
6484
(
2007
).
33.
S.
Goswami
,
D.
Bhattacharya
, and
P.
Choudhary
,
J. Appl. Phys.
109
,
07D737
(
2011
).

Supplementary Material

You do not currently have access to this content.