Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction can be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.

3.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R. G.
Yang
,
H.
Lee
,
D. Z.
Wang
,
Z. F.
Ren
,
J. P.
Fleurial
, and
P.
Gogna
,
Adv. Mater.
19
,
1043
(
2007
).
4.
A. I.
Hochbaum
and
P.
Yang
,
Chem. Rev.
110
,
527
(
2010
).
5.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J. K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature
451
,
168
(
2008
).
6.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
(
2008
).
7.
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
2934
(
2003
).
8.
J.
Zou
and
A. A.
Balandin
,
J. Appl. Phys.
89
,
2932
(
2001
).
9.
E. P.
Pokatilov
,
D. L.
Nika
, and
A. A.
Balandin
,
Phys. Rev. B
72
,
113311
(
2005
).
10.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
16631
(
1993
).
11.
D.
Donadio
and
G.
Galli
,
Phys. Rev. Lett.
102
,
195901
(
2009
).
12.
R.
Chen
,
A. I.
Hochbaum
,
P.
Murphy
,
J.
Moore
,
P.
Yang
, and
A.
Majumdar
,
Phys. Rev. Lett.
101
,
105501
(
2008
).
13.
M.
Hu
,
X.
Zhang
,
K. P.
Giapis
, and
D.
Poulikakos
,
Phys. Rev. B.
84
,
085442
(
2011
).
14.
M.
Hu
,
K. P.
Giapis
,
J. V.
Goicochea
,
X.
Zhang
, and
D.
Poulikakos
,
Nano Lett.
11
,
618
(
2011
).
15.
X.
Zhang
,
M.
Hu
,
K. P.
Giapis
, and
D.
Poulikakos
,
J. Heat Transfer
134
,
102402
(
2012
).
16.
T.
Markussen
,
Nano Lett.
12
,
4698
(
2012
).
17.
M. C.
Wingert
,
Z. C. Y.
Chen
,
E.
Dechanumphai
,
J.
Moon
,
J.
Kim
,
J.
Xiang
, and
R.
Chen
,
Nano lett.
11
,
5507
(
2011
).
18.
M.
Liangruksa
and
I. K.
Puri
,
J. Appl. Phys.
109
,
113501
(
2011
).
19.
G.
Balasubramanian
,
I. K.
Puri
,
M. C.
Böhm
, and
F.
Leroy
,
Nanoscale
3
,
3714
(
2011
).
20.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
McEuen
,
Phys. Rev. Lett.
87
,
215502
(
2001
).
21.
L.
Shi
,
D.
Li
,
C.
Yu
,
W.
Jang
,
D.
Kim
,
Z.
Yao
,
P.
Kim
, and
A.
Majumdar
,
J. Heat Transfer
125
,
881
(
2003
).
22.
C.
Yu
,
L.
Shi
,
Z.
Yao
,
D.
Li
, and
A.
Majumdar
,
Nano Lett.
5
,
1842
(
2005
).
23.
Z.
Huang
,
H.
Fang
, and
J.
Zhu
,
Adv. Mater.
19
,
744
(
2007
).
24.
Z.
Huang
,
N.
Geyer
,
P.
Werner
,
J.
de Boor
, and
U.
Gösele
,
Adv. Mater.
23
,
285
(
2011
).
25.
D. J.
Hwang
,
S. G.
Ryu
, and
C. P.
Grigoropoulos
,
Nanotechnology
22
,
385303
(
2011
).
26.
D. J.
Hwang
,
S. G.
Ryu
,
E.
Kim
, and
C. P.
Grigoropoulos
,
Appl. Phys. Lett.
99
,
123109
(
2011
).
27.
J. P.
Feser
,
J. S.
Sadhu
,
B. P.
Azeredo
,
K. H.
Hsu
,
J.
Ma
,
J.
Kim
,
M.
Seong
,
N. X.
Fang
,
X.
Li
,
P. M.
Ferreira
,
S.
Sinha
, and
D. G.
Cahill
,
J. Appl. Phys.
112
,
114306
(
2012
).
28.
J.
Lim
,
K.
Hippalgaonkar
,
S. C.
Andrews
,
A.
Majumdar
, and
P.
Yang
,
Nano Lett.
12
,
2475
(
2012
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4913879 for more information on the fabrication details of nanowires arrays and error analysis of the measurement.

Supplementary Material

You do not currently have access to this content.