Fe1−xS (0.08 ≤ x ≤ 0.11) exhibits a simultaneous magneto-structural “λ-transition” at approximately 200 °C. Time-dependent magnetization measurements demonstrate the λ-transition can be accurately modeled by a stretched exponential function, consistent with a nucleation-free, continuous reordering of the vacancy-bearing sublattice. The experimental result is supported by kinetic Monte Carlo simulations that confirm the activation energy for the transition to be 1.1 ± 0.1 eV—representing the iron vacancy migration energy in ordered Fe1−xS. A mechanistic understanding of the λ-transition enables potential functional uses of Fe1−xS such as thermally activated magnetic memory, switches, or storage.

1.
G. H.
Yue
,
P. X.
Yan
,
X. Y.
Fan
,
M. X.
Wang
,
D. M.
Qu
,
D.
Yan
, and
J. Z.
Liu
, “
Characterization of the single crystalline iron sulfide nanowire array synthesis by pulsed electrodeposition
,”
J. Appl. Phys.
100
(
12
),
124313
(
2006
).
2.
M.
Nath
,
A.
Choudhury
,
A.
Kundu
, and
C. N. R.
Rao
, “
Synthesis and characterization of magnetic iron sulfide nanowires
,”
Adv. Mater.
15
(
24
),
2098
2101
(
2003
).
3.
I. S.
Lyubutin
,
C.-R.
Lin
,
S.-Z.
Lu
,
Y.-J.
Siao
,
Y. V.
Korzhetskiy
,
T. V.
Dmitrieva
,
Y. L.
Dubinskaya
,
V. S.
Pokatilov
, and
A. O.
Konovalova
, “
High-temperature redistribution of cation vacancies and irreversible magnetic transitions in Fe1−xS nanodisks observed by Mössbauer spectroscopy and magnetic measurements
,”
J. Nanopart. Res.
13
(
10
),
5507
5517
(
2011
).
4.
T.
Takayama
and
H.
Takagi
, “
Phase-change magnetic memory effect in cation-deficient iron sulfide Fe1−xS
,”
Appl. Phys. Lett.
88
(
1
),
012512
(
2006
).
5.
F.
Li
,
H. F.
Franzen
, and
M. J.
Kramer
, “
Ordering, incommensuration, and phase transitions in pyrrhotite: Part I: A TEM study of Fe7S8
,”
J. Solid State Chem.
124
(
2
),
264
271
(
1996
).
6.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
, “
Multiferroic and magnetoelectric materials
,”
Nature
442
,
759
765
(
2006
).
7.
A.
Mandala
,
A.
Bosea
,
S.
Mitraa
,
A.
Dattac
,
S.
Banerjeeb
, and
D.
Chakravortya
, “
Multiferroic properties of NiS nanoplates grown within Na-4 mica
,”
J. Magn. Magn. Mater.
324
,
2861
(
2012
).
8.
A.
Karmakar
,
K.
Dey
,
S.
Chatterjee
,
S.
Majumdar
, and
S.
Giri
, “
Spin correlated dielectric memory and rejuvenation in multiferroic CuCrS2
,”
Appl. Phys. Lett.
104
,
052906
(
2014
).
9.
F.
Damay
,
C.
Martin
,
V.
Hardy
,
G.
Andre
,
S.
Petit
, and
A.
Maignan
, “
Magnetoelastic coupling and unconventional magnetic ordering in the multiferroic triangular lattice AgCrS2
,”
Phys. Rev. B
83
,
184413
(
2011
).
10.
M. G.
Townsend
,
A. H.
Webster
,
J. L.
Horwood
, and
H.
Roux-Buisson
, “
Ferrimagnetic transition in Fe0.9S: Magnetic, thermodynamic and kinetic aspects
,”
J. Phys. Chem. Solids
40
(
3
),
183
189
(
1979
).
11.
L. A.
Marusak
and
L. N.
Mulay
, “
Polytypism in the cation-deficient iron sulfide, Fe9S10, and the magnetokinetics of the diffusion process at temperatures about the antiferro- to ferrimagnetic λ phase transition
,”
Phys. Rev. B
21
,
238
244
(
1980
).
12.
I. S.
Hagemann
,
Q.
Huang
,
X. P. A.
Gao
,
A. P.
Ramirez
, and
R. J.
Cava
, “
Geometric magnetic frustration in a two-dimensional spinel based Kagomé lattice
,”
Phys. Rev. Lett.
86
(
5
),
894
897
(
2001
).
13.
A. V.
Powell
,
P.
Vaqueiro
,
K. S.
Knight
,
L. C.
Chapon
, and
R. D.
Sánchez
, “
Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutron-diffraction study
,”
Phys. Rev. B
70
,
014415
(
2004
).
14.
See supplementary material at http://dx.doi.org/10.1063/1.4913201 for further details on pyrrhotite polytypes, sample preparation, kinetic Monte Carlo simulations, density functional theory calculations, short-timescale magnetization results, differential scanning calorimetry, and fitting parameters.
15.
F. K.
Lotgering
, “
Ferrimagnetism of sulfides and oxides
,”
Phillips Res. Rep.
11
,
190
217
(
1956
).
16.
S. A.
Kissin
and
S. D.
Scott
, “
Phase relations involving pyrrhotite below 350 °C
,”
Economic Geology
77
(
7
),
1739
1754
(
1982
).
17.
H.
Nakazawa
and
N.
Morimoto
, “
Phase relations and superstructures of pyrrhotite, Fe1−xS
,”
Mater. Res. Bull.
6
(
5
),
345
357
(
1971
).
18.
E. J.
Schwarz
and
D. J.
Vaughan
, “
Magnetic phase relations of pyrrhotite
,”
J. Geomagn. Geoelectr.
24
(
4
),
441
458
(
1972
).
19.
M.
Danielewski
,
S.
Mrowec
, and
A.
Stoaosa
, “
Sulfidation of iron at high temperatures and diffusion kinetics in ferrous sulfide
,”
Oxid. Met.
17
(
1–2
),
77
97
(
1982
).
20.
E. M.
Fryt
,
W. W.
Smeltzer
, and
J. S.
Kirkaldy
, “
Chemical diffusion and point defect properties of iron sulfide at temperatures 600 °C
,”
J. Electrochem. Soc.
126
(
4
),
673
683
(
1979
).
21.
R. H.
Condit
,
R. R.
Hobbins
, and
C. E.
Birchenall
, “
Self-diffusion of iron and sulfur in ferrous sulfide
,”
Oxid. Met.
8
(
6
),
409
455
(
1974
).
22.
P.
Walder
and
A. D.
Pelton
, “
Thermodynamic modeling of the Fe-S system
,”
J. Phase Equilib. Diffus.
26
(
1
),
23
38
(
2005
).
23.
A.
Jesche
,
R. W.
McCallum
,
S.
Thimmaiah
,
J. L.
Jacobs
,
V.
Taufour
,
A.
Kreyssig
,
R. S.
Houk
,
S. L.
Budanko
, and
P. C.
Canfield
, “
Giant magnetic anisotropy and tunnelling of the magnetization in Li2(Li1−xFex)N
,”
Nat. Commun.
5
,
3333
(
2014
).
24.
M.
Loving
, “
Understanding the magnetostructural transformation in FeRh thin films
,” Ph.D. dissertation (
Northeastern University
,
2014
).
25.
R. W.
Balluffi
,
S. M.
Allen
, and
W. C.
Carter
,
Kinetics of Materials
(
Wiley
,
2005
).
26.
R.
Metzler
and
J.
Klafter
, “
The random walk's guide to anomalous diffusion: a fractional dynamics approach
,”
Phys. Rep.
339
(
1
),
1
77
(
2000
).
27.
A. K.
Jonscher
, “
Dielectric relaxation in solids
,”
J. Phys. D: Appl. Phys.
32
(
14
),
R57
(
1999
).
28.
E. B.
Walton
and
K. J.
VanVliet
, “
Equilibration of experimentally determined protein structures for molecular dynamics simulation
,”
Phys. Rev. E
74
(
6
),
061901
(
2006
).
29.
J.
Kakalios
,
R. A.
Street
, and
W. B.
Jackson
, “
Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon
,”
Phys. Rev. Lett.
59
(
9
),
1037
1040
(
1987
).
30.
J.
Klafter
and
M. F.
Shlesinger
, “
On the relationship among three theories of relaxation in disordered systems
,”
Proc. Natl. Acad. Sci.
83
(
4
),
848
851
(
1986
).
31.
R. G.
Palmer
,
D. L.
Stein
,
E.
Abrahams
, and
P. W.
Anderson
, “
Models of hierarchically constrained dynamics for glassy relaxation
,”
Phys. Rev. Lett.
53
(
10
),
958
961
(
1984
).

Supplementary Material

You do not currently have access to this content.