In this work, device performances of tunneling field effect transistors (TFETs) based on phosphorene are explored via self-consistent atomistic quantum transport simulations. Phosphorene is an ultra-thin two-dimensional (2-D) material with a direct band gap suitable for TFETs applications. Our simulation shows that phosphorene TFETs exhibit subthreshold slope below 60 mV/dec and a wide range of on-current depending on the transport direction due to highly anisotropic band structures of phosphorene. By benchmarking with monolayer MoTe2 TFETs, we predict that phosphorene TFETs oriented in the small effective mass direction can yield much larger on-current at the same on-current/off-current ratio than monolayer MoTe2 TFETs. It is also observed that a gate underlap structure is required for scaling down phosphorene TFETs in the small effective mass direction to suppress the source-to-drain direct tunneling leakage current.

1.
A. C.
Seabaugh
and
Q.
Zhang
,
Proc. IEEE
98
,
2095
(
2010
).
2.
W. Y.
Choi
,
B.-G.
Park
,
J. D.
Lee
, and
T.-J.
King Liu
,
Electron Dev. Lett.
28
,
743
(
2007
).
3.
T.
Krishnamohan
,
D.
Kim
,
S.
Raghunathan
, and
K.
Saraswat
,
Tech. Dig. – Int. Electron Devices Meet.
2008
,
947
.
4.
U. E.
Avci
,
R.
Rios
,
K.
Kuhn
, and
I. A.
Young
,
Dig. Tech. Pap. Symp. VLSI Technol.
2011
,
124
.
5.
J.
Knoch
and
J.
Appenzeller
,
IEEE Electron Device Lett.
31
,
305
(
2010
).
6.
P.
Zhao
,
J.
Chauhan
, and
J.
Guo
,
Nano Lett.
9
,
684
(
2009
).
7.
D.
Basu
,
M. J.
Gilbert
,
L. F.
Register
,
S. K.
Banerjee
, and
A. H.
MacDonald
,
Appl. Phys. Lett.
92
,
042114
(
2008
).
8.
M.
Luisier
and
G.
Kimeck
,
Appl. Phys. Lett.
94
,
223505
(
2009
).
9.
J.
Chang
,
L. F.
Register
, and
S. K.
Banerjee
,
Proc. Device Res. Conf.
2012
,
31
.
10.
Q.
Zhang
,
G.
Iannaccone
, and
G.
Fiori
,
IEEE Electron Device Lett.
35
,
129
(
2014
).
11.
K.-T.
Lam
,
X.
Cao
, and
J.
Guo
,
IEEE Electron Device Lett.
34
,
1331
(
2013
).
12.
H.
Liu
,
A. T.
Neal
,
Z.
Zhu
,
Z.
Luo
,
X.
Xu
,
D.
Tománek
, and
P. D.
Ye
,
ACS Nano
8
,
4033
(
2014
).
13.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
(
2014
).
14.
Y.
Cai
,
G.
Zhang
, and
Y.
Zhang
,
Sci. Rep.
4
,
6677
(
2014
).
15.
V.
Tran
,
R.
Soklaski
,
Y.
Liang
, and
Li.
Yang
,
Phys. Rev. B
89
,
235319
(
2014
).
16.
S.
Das
,
W.
Zhang
,
M.
Demarteau
,
A.
Hoffmann
,
M.
Dubey
, and
A.
Roelofs
,
Nano Lett.
14
,
5733
(
2014
).
17.
J.
Qiao
,
X.
Kong
,
Z.
Hu
,
F.
Yang
, and
W.
Ji
,
Nat. Commun.
5
,
4475
(
2014
).
18.
X.
Peng
,
Q.
Wei
, and
A.
Copple
,
Phys. Rev. B
90
,
085402
(
2014
).
19.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
72
,
045121
(
2005
).
20.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
21.
A.
Brown
and
S.
Rundqvist
,
Acta Cryst.
19
,
684
(
1965
).
22.
X.
Wang
,
A. M.
Jones
,
K. L.
Seyler
,
V.
Tran
,
Y.
Jia
,
H.
Zhao
,
H.
Wang
,
Li.
Yang
,
X.
Xu
, and
F.
Xia
, preprint arXiv:1411.1695 (
2014
).
23.
H.
Weng
,
T.
Ozaki
, and
K.
Terakura
,
Phys. Rev. B
79
,
235118
(
2009
).
24.
H.
Asahina
and
A.
Morita
,
J. Phys. C: Solid State Phys.
17
,
1839
(
1984
).
25.
T.
Usuki
,
M.
Saito
,
M.
Takatsu
,
C. R.
Kiehl
, and
N.
Yokoyama
,
Phys. Rev. B
52
,
8244
(
1995
).
26.
Process Integration, Devices, and Structures (PIDS), International Technology Roadmap for Semiconuctors (ITRS), available at: http://www.itrs.net/.
27.
J.
Chang
,
L. F.
Register
, and
S. K.
Banerjee
,
J. Appl. Phys.
115
,
084506
(
2014
).
28.
Y.
Yoon
and
S.
Salahuddin
,
Appl. Phys. Lett.
101
,
263501
(
2012
).
You do not currently have access to this content.