We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

1.
B. T.
Matthias
,
T. H.
Geballe
,
S.
Geller
, and
E.
Corenzwit
,
Phys. Rev.
95
,
1435
(
1954
).
2.
E. L.
Wolf
,
J. F.
Zasadzinski
,
G. B.
Arnold
,
D. F.
Moore
,
J. M.
Rowell
, and
M. R.
Beasley
,
Phys. Rev. B
22
,
1214
(
1980
).
3.
L. Y.
Shen
,
Phys. Rev. Lett.
29
,
1082
(
1972
).
4.
J.
Hanak
,
K.
Strater
, and
R.
Cullen
,
RCA Rev.
25
,
342
(
1964
).
5.
D. F.
Moore
,
R. B.
Zubeck
,
J. M.
Rowell
, and
M. R.
Beasley
,
Phys. Rev. B
20
,
2721
(
1979
).
6.
B.
Hillenbrand
,
H.
Martens
,
H.
Pfister
, and
Y.
Uzel
,
IEEE Trans. Magn.
13
,
491
(
1977
).
7.
P.
Kneisel
,
O.
Stoltz
, and
J.
Halbritter
,
IEEE Trans. Magn.
15
,
21
(
1979
).
8.
G.
Arnolds
and
D.
Proch
,
IEEE Trans. Magn.
13
,
500
(
1977
).
9.
M.
Peiniger
,
M.
Hein
,
N.
Klein
,
G.
Muller
,
H.
Piel
, and
P.
Thuns
,
Proceedings of The Third Workshop on RF Superconductivity, Argonne National Laboratory
(
Argonne National Laboratory
,
1987
), Vol.
1
, p.
503
.
10.
G.
Muller
,
H.
Piel
,
J.
Pouryamout
, and
P.
Kneisel
,
Proceedings of the Workshop on Thin Film Coatings Methods for Superconducting Accelerating Cavities
(
INFN-Legnaro National Laboratory
,
2000
), Vol.
1
, p.
15
.
11.
S.
Posen
and
M.
Liepe
,
Phys. Rev. ST Accel. Beams
17
,
112001
(
2014
).
12.
H.
Devantay
,
J. L.
Jorda
,
M.
Decroux
, and
J.
Muller
,
J. Mater. Sci.
16
,
2145
(
1981
).
13.
G. K.
Williamson
and
W. H.
Hall
,
Acta Metall.
1
,
22
(
1953
).
14.
R. C.
Dynes
,
V.
Narayanamurti
, and
J. P.
Garno
,
Phys. Rev. Lett.
41
,
1509
(
1978
).
15.
T. P.
Orlando
,
E. J.
McNiff
,
G. R.
Myeni
,
S.
Foner
, and
M. R.
Beasley
,
Phys. Rev. B
19
,
4545
(
1979
).
16.
M.
Hein
,
High-Temperature-Superconductor Thin Films at Microwave Frequencies
(
Springer
,
New York
,
1999
).
17.
N. R.
Groll
and
T.
Proslier
, “Large scale tunneling spectroscopy investigation of the surface superconducting properties,”
Rev. Sci. Instrum. (submitted)
.
18.
C.
Cao
,
D.
Ford
,
S.
Bishnoi
,
T.
Proslier
,
B.
Albee
,
E.
Hommerding
,
A.
Korczakowski
,
L.
Cooley
,
G.
Ciovati
, and
J. F.
Zasadzinski
,
Phys. Rev. ST Accel. Beams
16
,
064701
(
2013
).
19.
T.
Proslier
,
J. F.
Zasadzinski
,
L.
Cooley
,
C. Z.
Antoine
,
J.
Moore
,
J.
Norem
,
M.
Pellin
, and
K. E.
Gray
,
Appl. Phys. Lett.
92
,
212505
(
2008
).
20.
T.
Proslier
,
J. F.
Zasadzinski
,
J.
Moore
,
M.
Pellin
,
J.
Elam
,
L.
Cooley
,
C.
Antoine
,
J.
Norem
, and
K. E.
Gray
,
Appl. Phys. Lett.
93
,
192504
(
2008
).
21.
P.
Dhakal
,
G.
Ciovati
,
G. R.
Myeni
,
K. E.
Gray
,
N.
Groll
,
P.
Maheshwari
,
D. M.
McRae
,
R.
Pike
,
F.
Stevie
,
R. P.
Walsh
,
Q.
Yang
, and
J. F.
Zasadzinski
,
Phys. Rev. ST Accel. Beams
16
,
042001
(
2013
).
22.
A.
Godeke
,
Supercond. Sci. Technol.
19
,
R68
(
2006
).
23.
W. L.
McMillan
,
Phys. Rev.
175
,
537
(
1968
).
24.
S.
Posen
, “
Understanding and overcoming limitation mechanisms in Nb3Sn superconducting RF cavities
,” Ph.D. thesis (
Cornell University
,
2015
).
You do not currently have access to this content.