The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5–10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.

1.
D.
Dowsin
,
History of Tribology
(
Longman
,
London
,
1979
).
2.
G.
Amontons
, “
De la resistance causee dans les machniines
,”
Mem. Acad. R. A.
275
282
(
1699
).
3.
A.
Berman
,
C.
Drummond
, and
J.
Israelachvili
, “
Amontons' law at the molecular level
,”
Tribol. Lett.
4
,
95
101
(
1998
).
4.
A. M.
Homola
,
J. N.
Israelachvili
,
P. M.
McGuiggan
, and
M. L.
Gee
, “
Fundamental experimental studies in tribology: The transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear
,”
Wear
136
,
65
83
(
1990
).
5.
Y. F.
Mo
,
K. T.
Turner
, and
I.
Szlufarska
, “
Friction laws at the nanoscale
,”
Nature
457
,
1116
1119
(
2009
).
6.
F. P.
Bowden
and
D.
Tabor
,
The Friction and Lubrication of Solids
(
Claredon
,
1950
).
7.
R. W.
Carpick
,
D. F.
Ogletree
, and
M.
Salmeron
, “
A general equation for fitting contact area and friction vs load measurements
,”
J. Colloid Interface Sci.
211
,
395
400
(
1999
).
8.
O.
Zworner
,
H.
Holscher
,
U. D.
Schwarz
, and
R.
Wiesendanger
, “
The velocity dependence of frictional forces in point-contact friction
,”
Appl. Phys. A
66
,
S263
S267
(
1998
).
9.
E.
Gnecco
,
R.
Bennewitz
,
T.
Gyalog
,
C.
Loppacher
,
M.
Bammerlin
,
E.
Meyer
, and
H. J.
Guntherodt
, “
Velocity dependence of atomic friction
,”
Phys. Rev. Lett.
84
,
1172
1175
(
2000
).
10.
B.
Bhushan
, “
Nano- to microscale wear and mechanical characterization using scanning probe microscopy
,”
Wear
251
,
1105
1123
(
2001
).
11.
J.
Israelachvili
,
Y.
Min
,
M.
Akbulut
,
A.
Alig
,
G.
Carver
,
W.
Greene
,
K.
Kristiansen
,
E.
Meyer
,
N.
Pesika
,
K.
Rosenberg
, and
H.
Zeng
, “
Recent advances in the surface forces apparatus (SFA) technique
,”
Rep. Prog. Phys.
73
,
036601
(
2010
).
12.
D. D.
Lowrey
,
K.
Tasaka
,
J. H.
Kindt
,
X.
Banquy
,
N.
Belman
,
Y.
Min
,
N. S.
Pesika
,
G.
Mordukhovich
, and
J. N.
Israelachvili
, “
High-speed friction measurements using a modified surface forces apparatus
,”
Tribol. Lett.
42
,
117
127
(
2011
).
13.
A. Y.
Suh
,
C. M.
Mate
,
R. N.
Payne
, and
A. A.
Polycarpou
, “
Experimental and theoretical evaluation of friction at contacting magnetic storage slider-disk interfaces
,”
Tribol. Lett.
23
,
177
190
(
2006
).
14.
H.
Tang
,
L. P.
Wang
,
J.
Gui
, and
D.
Kuo
, “
A study of dynamic friction at the head-disk interface
,”
J. Appl. Phys.
87
,
6152
6154
(
2000
).
15.
Q.
Dai
,
B. K.
Yen
,
R. L.
White
,
P. J.
Peterson
, and
B.
Marchon
, “
Toward an understanding of overcoat corrosion protection
,”
IEEE Trans. Magn.
39
,
2450
2452
(
2003
).
16.
J. Y.
Juang
,
D.
Chen
, and
D. B.
Bogy
, “
Alternate air bearing slider designs for areal density of 1 Tb/in2
,”
IEEE Trans. Magn.
42
,
241
246
(
2006
).
17.
S. V.
Canchi
,
D. V.
Bogy
,
R. H.
Wang
, and
A. N.
Murthy
, “
Parametric investigations at the head-disk interface of thermal fly-height control sliders in contact
,”
Adv. Tribol.
2012
,
303071
.
18.
J.
Zheng
and
D. B.
Bogy
, “
Investigation of flying-height stability of thermal fly-height control sliders in lubricant or solid contact with roughness
,”
Tribol. Lett.
38
,
283
289
(
2010
).
19.
K. H.
Chung
and
D. E.
Kim
, “
Fundamental investigation of micro wear rate using an atomic force microscope
,”
Tribol. Lett.
15
,
135
144
(
2003
).
20.
A. G.
Khurshudov
,
K.
Kato
, and
H.
Koide
, “
Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM
,”
Tribol. Lett.
2
,
345
354
(
1996
).
21.
B.
Bhushan
and
K. J.
Kwak
, “
Velocity dependence of nanoscale wear in atomic force microscopy
,”
Appl. Phys. Lett.
91
,
163113
(
2007
).
22.
I. P. d.
Hayward
,
I. L.
Singer
, and
L. E.
Seitzma
, “
Effect of roughness on the friction of diamond on cvd diamond coatings
,”
Wear
157
,
215
(
1992
).
23.
A.
Konicek
,
D. S.
Grierson
,
A. V.
Sumant
,
T. A.
Friedmann
,
J. P.
Sullivan
,
P. U. P. A.
Gilbert
,
W. G.
Sawyer
, and
R. W.
Carpick
, “
Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films
,”
Phys. Rev. B.
85
,
155448
(
2012
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4913465 for the overcoat wear as a function of current on a similar head-disk interface.
25.
J. N.
Israelachvili
,
P. M.
McGuiggan
, and
A. M.
Homola
, “
Dynamic properties of molecularly thin liquid films
,”
Science
240
,
189
191
(
1988
).

Supplementary Material

You do not currently have access to this content.