The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

1.
S.
Mitragotri
,
Nat. Rev. Drug Discovery
4
,
255
(
2005
).
2.
L. R.
Duarte
,
Arch. Orthop. Trauma Surg.
101
,
153
(
1983
).
3.
F.
Padilla
,
Ultrasonics
54
,
1125
1145
(
2014
).
4.
E.
Fukada
and
I.
Yasuda
,
J. Phys. Soc. Jpn.
12
,
1158
(
1957
).
5.
M. H.
Shamos
and
L. S.
Lavine
,
Clin. Orthop.
35
,
177
(
1964
).
6.
J. C.
Anderson
and
C.
Eriksson
,
Nature
227
,
491
(
1970
).
7.
W.
Starkebaum
,
S. R.
Pollack
, and
E.
Korostoff
,
J. Biomed. Mater. Res. Part A
13
,
729
(
1979
).
8.
A. L.
Bassett
,
R. J.
Pawluk
, and
R. O.
Becker
,
Nature
204
,
652
(
1964
).
9.
A. A.
Marino
,
R. O.
Becker
, and
S. C.
Soderholm
,
Calcif. Tissue Res.
8
,
177
(
1971
).
10.
Y.
Zhang
,
A. A.
Gandhi
,
J.
Zeglinski
,
M.
Gregor
, and
S. A. M.
Tofail
,
IEEE Trans. Dielectr. Electr. Insul.
19
,
1151
(
2012
).
11.
K.
Ikushima
,
S.
Watanuki
, and
S.
Komiyama
,
Appl. Phys. Lett.
89
,
194103
(
2006
).
12.
M.
Okino
,
S.
Coutelou
,
K.
Mizuno
,
T.
Yanagitani
, and
M.
Matsukawa
,
Appl. Phys. Lett.
103
,
103701
(
2013
).
13.
Y.
Yamato
,
M.
Matsukawa
,
T.
Yanagitani
,
K.
Yamazaki
,
H.
Mizukawa
, and
A.
Nagano
,
Calcif. Tissue Int.
82
,
162
(
2008
).
14.
Y.
Nakamura
and
T.
Otani
,
J. Acoust. Soc. Am.
94
,
1191
1199
(
1993
).
15.
H.
Mermoz
,
Acustica
8
,
103
(
1958
).
16.
17.
G. M.
Sessler
,
J. Acoust. Soc. Am.
70
,
1596
(
1981
).
18.
K.
Tashiro
,
M.
Kobayashi
,
H.
Tadokoro
, and
E.
Fukada
,
Macromolecules
13
,
691
(
1980
).
19.
A. C.
Ahn
and
A. J.
Grodzinsky
,
Med. Eng. Phys.
31
,
733
(
2009
).
20.
J. H.
Kim
,
M.
Niinomi
, and
H.
Toda
,
JSME Int. J., Ser. A
48
(
4
),
472
480
(
2005
).
21.
C. M.
Riggs
,
L. E.
Lanyon
, and
A.
Boyde
,
Anat. Embryol.
187
,
231
238
(
1993
).
22.
C. M.
Riggs
,
L. C.
Vaughan
,
G. P.
Evans
,
L. E.
Lanyon
, and
A.
Boyde
,
Anat. Embryol.
187
,
239
248
(
1993
).
You do not currently have access to this content.